Harris Semiconductor

()

L

March 1997

No. AN121.1

Harris Digital

Harris 80C286 Performance Advantages Over the 80386SX

Author: Ted Dimbero

Introduction

The Harris 80C286, operating at the same frequency as the
80386SX, can outperform the 80386SX when executing
software written for the 80286 and 8086, including all
MS-DOSO, PC-DOSO and 0OS/20 -based programs. This
performance advantage comes from the 80C286
requirement of fewer clock cycles to execute the same
instructions as the 80386SX.

Industry standard 16-bit 8086/80286 code can execute
15-25% more efficiently on the 80C286 than on the
80386SX. There is no performance advantage gained by
simply moving a system design from an 80C286 to an
80386SX. The 80C286 is the processor best suited for
executing 16-bit 8086/80286 code.

The difference in clock cycle requirements is summarized in
Figure 1. Of the 182 common instructions, the 80C286
executes 79 instructions faster than the 80386SX. Another
64 instructions execute in the same number of clock cycles
on both processors.

Overall, 143 instructions (78% of all common instructions)
execute as fast or faster on the 80C286 than on the
80386SX.

80C286 - 16
FASTER THAN
80386SX - 16

80C286 - 16
EQUAL TO

80386SX - 16 80386SX - 16

FASTER THAN
80C286 - 16

FIGURE 1. EXECUTION SPEED COMPARISON (NUMBER OF
INSTRUCTIONS)

Taking this comparison one step further and looking at the
performance contribution of each subset of instructions,
those instructions that execute faster on the 80386SX are

executed an average of 1.6 clock cycles faster. However, the
instructions which execute faster on the 80C286 execute in
an average of 23.1 clock cycles less than on the 80386SX.

Operating Speeds

The Harris 80C286 is available with operating frequencies of
12.5, 16, 20 and 25MHz. The 80386SX maximum operating
frequency is limited to 16MHz. The instruction comparisons
in Figure 1 (and throughout this document) evaluate the
number of clock cycles required to execute the same
instructions on both the 80386SX and the 80C286.
Therefore, it illustrates the performance differences when
the two processors are running at the same speed.

As this analysis shows, the 80C286 has the performance
advantage when the two processors are running at the same
speed. This 80C286 advantage is significantly greater when
speed differences are taken into consideration.

The 80C286-25, for example, can execute 100% of the
instructions available on both processors faster than a
16MHz 80386SX. In some cases, a 2X performance
increase can be seen with the 80C286-25 compared to the
80386SX-16 (see Table 1).

This is not a benchmark number that can be credited to
differences in system design; it illustrates a one-to-one
comparison of the length of time it takes to execute the same
instruction on the two processors. That is, given two
equivalent systems (both having the same disk access
speed, same number of wait states, similar cache
controllers, etc), the 80C286-25 system would outperform
the 80386SX system on any benchmark.

Table 1 illustrates a performance comparison of the
80386SX-16, 80C286-16, 80C286-20 and 80C286-25. The
table lists the number of clock cycles needed to execute five
different subroutines (see examples 1-5 in Subroutine Analy-
sis section) and the total execution times for each subroutine
for the two processors at varying operating frequencies.

In each of these examples, the results show that the 80C286
outperforms the 80386SX. In addition, the 80C286-25 shows
performance increases of 170%-250% over the 80386SX-
16. The 80C286 not only outperforms the 80386SX at similar
operating frequencies, it also provides a path to increased
performance by offering operating frequencies up to 25MHz
which are not available with the 80386SX.

Copyright © Harris Corporation 1997
PC-DOSLI, 0S/200 are Trademarks of International Business Machines Corporation
Xenixd, MS-DOSO are Trademarks of Microsoft Corporation

7-47

Application Note 121

TABLE 1.
80C286-16 80C286-20 80C286-25

PER- PER- PER-

FORMANCE FORMANCE FORMANCE

SUB- 80386SX | 80C286 |80386SX-16 INCREASE INCREASE INCREASE
ROUTINES | # CLOCK | # CLOCK |EXECUTIONJEXECUTION| OVER JEXECUTION| OVER JEXECUTION| OVER

(PGS 6-9) | cYCLES | cYCLES | TIME (us) | TIME (us) |80386Sx-16] TIME (us) |80386Sx-16] TIME (us) |80386Sx-16
Example 1 104 73 6.5 46 141% 3.6 180% 2.92 223%
Example 2 2511 1899 156.9 118.7 132% 94.9 165% 75.9 132%
Example 3 2584 2380 161.5 148.7 108% 119.0 135% 95.2 170%
Example 4 837 583 52.3 36.4 143% 29.1 179% 23.3 224%
Example 5 307 193 19.2 121 158% 9.65 198% 7.7 249%

Architecture Background

The 80C286 static CMOS microprocessor combines low
operating and standby power with high performance and
operating frequencies up to 25MHz.

The 80C286 evolved from the industry standard 80C86
microprocessor and has vast architectural enhancements
over its predecessor that allow the 80C286 to execute the
same code with a significant performance increase.

Disregarding the clock speed increase, when upgrading from
an 80C86 to an 80C286, the 80C286 can execute the same
code with an increase in throughput of up to 4 times that of
the 80C86. This increase is solely due to the architectural
enhancements.

It is a common belief that replacing an 80C286 with the
80386SX microprocessor will yield similar performance
increases. This is not the case. The new architecture gives
the 80386SX 32-bit internal capability but it does not signifi-
cantly increase the throughput of 16-bit 8086 or 80286 code.

When executing industry standard 8086 or 80286 code,
replacing the 80C286 with an 80386SX does not result in a
significant performance increase. In many cases, such a
replacement will actually cause a performance degradation.
This is evident in the following areas:

(1) Input/Output Handling
(2) Interrupt Handling
(3) Control Transfer (Loop, Jump, Call)

(4) 80286 Protected Mode Systems
(5) Multi-Tasking and Task Switching Operations.

The performance advantage of the 80C286 is especially evi-
dent in areas such as:

¢ Protected Mode Operating System - such as OS/2 and
Xenix[

¢ Multi-Tasking Systems.

¢ Control Applications — utilizing interrupt and I/O instruc-
tions.

e Structured Software — utilizing many Control transfer
instructions.

« Operating Systems that rely on interrupts to perform func-
tions - such as MS-DOS, PC-DOS and OS/2.

¢ Upgrading 16-bit 80C86 applications for increased perfor-
mance.

Figure 2 illustrates a comparison of the number of clock
cycles needed to execute several instructions available on all
three microprocessors (80C86, 80C286, and 80386SX).
This illustrates the dramatic effect of 80C286 architectural
enhancements on performance when compared to the
80C86 and the lack of similar performance improvement
when executing 8086/80286 code on the 80386SX.

7-48

Application Note 121

TOTAL (353)

[MuL (BX)
[xOR AX, (BP) (SI)
I OUT PORT, AX
0 [NOT (Bx+ 10)
P (125) [cALLnnear
& [Loor
2u T INT3
4y [Anp
ZE "1 ADD mem (BX) (DI), AX
= (17)
o I ()
Rz (25)
we,
o “3J (19)
K)
8 a TOTAL (119)
§ o (52) TOTAL (101) | |(19)
OE .)
o — (10) (6
I‘é@ (7, <—/E7g
- (7 —
% (60) ng an
(33)
(23)
(28) (14) (19)
(8) 7

80C86 80C286

80386SX

FIGURE 2. ARCHITECTURAL COMPARISON

Hardware System Comparison
Pipelined Operation on a 16-Bit Data Bus

At a given clock frequency, pipelined address operation
increases a system’s performance, while simultaneously
allowing relatively slower memories and I/O devices to be
used. Pipelined address operation provides the system
increased address access time, and increased address
decoding time.

80C286

The 80C286 supports a fully pipelined mode of operation for
maximum system performance.

The 80C286 remains in a pipelined mode of operation even
when idle bus cycles occur.

80386SX

The 80386SX does not support a fully pipelined mode of
operation. Some pipelining can be achieved, but to accom-
plish this, external bus ‘monitor’ logic must be added to the
system.

The 80386SX’s pipelining is disrupted by idle bus cycles. A
non-pipelined bus cycle, usually with an additional wait state,
must be executed before the 80386SX can return to pipe-
lined mode. Idle bus cycles occur an average of 9% of the
time.

Idle Cycles

Another factor to consider when evaluating 80C286 and
80386SX performance is the effect of idle cycles on pipe-
lined operation. Calculations have shown that, on average,

bus idle cycles occur in the system approximately 9% of the
time. The effect of idle cycles on pipelining is quite different
on the 80C286 than on the 80386SX.

The 80C286 pipelined operation is not affected by idle
cycles. When an idle cycle or cycles occur in a stream of
pipelined bus cycles, the 80C286 returns to pipelining bus
cycles immediately after the last idle cycle. In this way, each
device on the bus (e.g. memory, peripheral) maintains a
fixed timing associated with that device, and therefore
always uses the minimum number of wait states required for
that device.

On the other hand, the 80386SX pipelined operation is dis-
rupted by idle cycles. With the 80386SX, an idle cycle or
cycles occurring in a pipelined stream of bus cycles breaks
the pipelining operation. Once an idle cycle has occurred, a
non-pipelined bus cycle must always be executed prior to
resuming pipelining. Since a non-pipelined bus cycle will
have different timing than a pipelined bus cycle (even to the
same device), an additional wait state must be added to this
bus cycle. This not only degrades performance, but requires
additional external logic to differentiate between a pipelined
bus cycle access, and a non-pipelined bus cycle access,
even to the same device with the same address.

From the preceding, it can be seen that when executing 16-
bit code, the 80C286 has a 9% performance increase over
the 80386SX, due to the manner in which each processor
handles idle cycles alone.

7-49

Application Note 121

Instruction Comparison

The Appendix in this document illustrates a direct compari-
son of the number of clock cycles needed to execute the
same instructions on the 80C286 and the 80386SX. The
table includes examples of instruction timing for all instruc-
tions available on both processors. Several addressing
modes of each instruction type are included.

Of the 182 instruction examples analyzed, 79 of the instruc-
tions execute faster on the 80C286 than on the 80386SX; 64
of the instructions analyzed execute in the same number of
clock cycles on both processors. This leaves only 39 instruc-
tions with improved performance on the 80386SX (See
Figure 2). Over 78% of the instructions analyzed execute as
fast or faster on the 80C286 than on the 80386SX.

This is vastly different than the previous 8086-t0-80286
upgrade. With that upgrade, the 80C286 exhibits equal or
better performance than the 80C86 with 100% of the
instructions.

This clearly indicates that the 80C286 is the processor best
suited for executing industry standard 8086 and 80286 code.

The following discussion groups each of the instructions into
one of several categories to analyze which applications will
benefit from utilizing the 80C286. The categories used are:

¢ Jumps, Calls, Returns and Loops (Real Mode).
¢ 1/O Instructions.

¢ Logic, Arithmetic, Data Transfer, Shift and Rotate Instruc-
tions.

* Interrupts.
* Miscellaneous Instructions.

« Protected Mode/Multi-Tasking Instructions.

Jumps, Calls and Loops

In real mode, near calls, jumps, and conditional jumps
(transfers within the current code segment) all take the same
number of clock cycles to execute on the 80C286 and the
80386SX. Since the segment sizes are larger on the
80386SX, the near transfer instructions on the 80386SX can
transfer a greater distance.

The far calls and jumps (transfers that switch to a new code
segment; i.e., a code segment context switch) are faster on
the 80C286: four clocks and one clock respectively. The far
return instruction executes in three less clock cycles on the
80C286, and the near return takes one extra clock cycle.
The protected mode calls, jumps, and returns are all faster
on the 80C286 and are discussed in the section on Pro-
tected Mode.

The loop instruction is three clock cycles faster on the
80C286 than the 80386SX. Thus, the 80C286 would save
300 clock cycles over the 80386SX if a LOOP instruction
were executed 100 times.

ADVANTAGE
INSTRUCTION 80C286 NONE | 80386SX
Near JMP and Call X

Far CALL, JMP and RET

LOOP X

I/O Instructions

The 80C286 has a significant advantage with the 1/O instruc-
tions. The IN instruction is almost 2 1/2 times faster on the
80C286; the 80386SX takes 7 extra clock cycles to execute
the same instruction. The OUT instruction is over 3 times
faster on the 80C286; again the 80386SX takes 7 extra clock
cycles to execute the same instruction. Executing the 1/O
instructions on the 80386SX is equivalent to executing on
the 80C286 with 7 wait states.

The string I/O instructions (INS and OUTS) are also signifi-
cantly faster on the 80C286. The INS instruction is 10 clock
cycles faster on the 80C286, and the OUTS instruction is 9
clock cycles faster. This is particularly important if the string
operations are going to be used to input or output a large
block of data using the REP prefix. Inputting 100 words of
data with the REP INS instruction is 208 clock cycles faster
on the 80C286. An even more significant difference can be
seen when outputting 100 words with the REP OUTS
instruction. In this case, the 80C286 is 800 clock cycles
faster than the 80386SX.

ADVANTAGE
INSTRUCTION 80C286 | NONE | 80386SX
IN X
ouT X
INS X
OUTS X

Logic, Arithmetic, Data Transfer, Shift and
Rotate Instructions

Most forms of the logic, arithmetic, and data transfer
instructions execute in the same number of clock cycles on
both processors. Certain operand combinations of these
instructions (immediate to register for example) take one
extra clock cycle to execute on the 80C286.

In real mode, the segment register transfer instructions
execute as fast or faster on the 80C286 than they do on the
80386SX. For example, using the POP instruction to transfer
data into a segment register is 2 clock cycles faster on the
80C286.

Most of the string manipulation instructions execute in the
same number of clock cycles on both processors. The
MOVS and STOS instructions are faster on the 80C286.

The divide instruction executes in the same number of clock
cycles on both processors. The number of clocks to execute
the multiply instruction on the 80386SX is data dependent;

7-50

Application Note 121

the number of clocks to execute the same instruction on the
80C286 is fixed. On average, the multiply instruction is five
clock cycles faster on the 80386SX, but independing on the
data, the 80386SX could be as many as 4 clock cycles
slower than the 80C286.

The rotate and shift instructions are faster on the 80386SX.
Unlike the 80C286, the 80386SX rotate and shift instructions
do not depend on the number of bits to be shifted or rotated.
Thus, the 80386SX has the advantage with multi-bit rotate
and shift instructions. The 80C286 does, however, execute
single bit rotate and shift instructions faster.

ADVANTAGE
INSTRUCTION 80C286 NONE | 80386SX
BCD Instructions X
Data Conversion (CBW, CWD) X
Flag Settling and Clearing X
BOUND (If No Interrupt) X

ADVANTAGE

INSTRUCTION 80C286 | NONE | 80386SX
Most Logic and Arithmetic X
Certain Operand Combinations X
of Logic and Arithmetic
Divide X
Multiply X
Single Bit Shift or Rotate X
Multi-Bit Shift or Rotate X
String Instructions X

Interrupt Instructions

Interrupts are serviced more quickly on the 80C286. The INT
instruction, in real mode, executes 14 cycles faster on the
80C286 than it does on the 80386SX. The INTO, BOUND,
and other instructions that can cause an interrupt all benefit
from the faster interrupt handling features of the 80C286.
The return from interrupt instruction (IRET) is 7 clock cycles
faster on the 80C286. The PUSHA and POPA instructions,
frequently used by interrupt handling procedures, are both
faster on the 80C286. Protected Mode interrupt handling is
discussed in the Protected Mode section.

Protected Mode/Multi-Tasking

When executing 80286 protected mode code, the 80C286
significantly out-performs the 80386SX. Task switching
operations execute 100 to 271 clock cycles faster on the
80C286. The instruction to return from a called task is 63
clock cycles faster on the 80C286. This results in a very
significant performance increase for systems utilizing the
multi-tasking features. The 80C286 is clearly better suited
than the 80386SX for running protected mode operating
systems such as OS/2 and Xenix.

Inter-segment JMP, CALL and segment loading instructions
also operate faster on the 80C286. The 80C286 saves any-
where from 4 to 11 clock cycles depending on the particular
inter-segment transfer instruction. In protected mode, the
inter-segment return is also faster on the 80C286. The
80C286 is 11 clock cycles faster when executing an inter-
segment return to the same privilege level and is 17 cycles
faster on inter-segment returns to a different privilege level.

The instructions to initialize and check the protected mode
registers execute as fast or faster on the 80C286. The IDTR
access instructions are an exception to this in that they take
one extra clock cycle to execute on the 80C286. The instruc-
tion to switch the processor to protected mode (LMSW) is 7
cycles faster on the 80C286.

Most of the 80286 protected mode access checking instruc-
tions operate as fast or faster on the 80C286 than on the
80386SX. The LAR instruction is one clock cycle faster on
the 80C286 and the LSL instruction is 5 clock cycles faster.
The VERW instruction executes in the same speed on both
processors and the VERR is 5 cycles faster on the 80386SX.
The ARPL instruction used in protected mode procedures for
pointer validation is 10 clock cycles faster on the 80C286.

ADVANTAGE
INSTRUCTION 80C286 | NONE | 80386SX
INT n X
INTO X
BOUND (If Interrupt) X
Break Point Interrupt X

Miscellaneous Instructions

The BCD instructions, HLT, and CBW execute from 1 to 5
clock cycles faster on the 80C286. The instructions to set
and clear individual flags and the CWD instruction all
execute in the same number of cycles on both processors.
The ENTER, LEAVE, and BOUND instructions are from 1 to
3 cycles faster on the 80386SX. The BOUND instruction is
only faster if an interrupt is not caused by the instruction.

ADVANTAGE
INSTRUCTION 80C286 | NONE | 80386SX
Task Switching X
Segment Register Loading X
Inter-Segment Transfer X
System Register Instructions X
Inter-Segment Transfers X
Access Checking Instructions X

7-51

Application Note 121

Subroutine Analysis

This section lists several subroutines and then compares the
number of clock cycles each subroutine will take to execute
on the 80C286 and on the 80386SX.

EXAMPLE 1

This interrupt routine outputs a character to a terminal via a

UART is free; when the UART is free, the character is output.
Following is a listing of the code and the clock clyde analysis
for the OUT_CHAR routine.

This sample procedure executes about 25% faster on the
80C286 than on the 80386SX. The advantage is realized

through the 80C286's faster interrupt handling and faster /O

UART. The AL register must contain the character to be instructions.

output. The routine first checks the status of the UART to
determine if it is busy. If it is busy, the routine loops until the

80C286 80386SX
CLOCK CYCLES CLOCK CYCLES OUT_CHARACTER PROC NEAR
3 PUSHF ; save caller’s flags.
3 2 PUSH AX ; save data to be output.
5 12 CK_STATUS: IN AL, PORT_STATUS ; Input UART status.
6 5 CMP AL, BUSY ; Check If UART Busy.
317 317 JE CK_STATUS ; If busy go check again.
5 4 POP AX ; If not busy restore AX
10 OUT OUT_PORT, AL ; and output data.
5 POPF ; Restore Flags
17 22 IRET ; Return.
23 37 INT x ; Instruction to initiate OUTCHAR
- I ; Interrupt.
73 104 Total cycles if UART not busy.
18 24 Number of cycles added for each loop while UART is busy.
EXAMPLE 1.
EXAMPLE 2

The second example outputs an entire string of characters
using the previous interrupt routine (denoted by “INT x” in the
code below). The DS:SI registers point to the beginning of

the string to be output. The string is variable in length and
must be terminated with the “$” character.

80C286 80386SX
CLOCK CYCLES CLOCK CYCLES OUT_STRING PROC FAR
17 18 PUSHA ; save caller’s registers.
5 5 NEXT: LODSB ; Load first char to be output.
3 2 CMP AL, “$” ; Check to see if End of string.
3/7 3/7 JE done ; If end then go to DONE.
73 104 INT x ; If not end output character.
7 7 JMP next ; Go get next char to output.
19 24 DONE: POPA ; Restore Registers when done.
15 18 RET ; Far Return.
13 17 Call OUT_STRING ; Far Call to initiate.
; OUT_STRING procedure.
79+91/char 91+121/char Total number of clocks to start and end routine.
+Number of additional clocks to output each character in the output string.

EXAMPLE 2.

To output a string of 20 characters, the 80C286 would take
1,899 clock cycles; using the same routine, the 80386SX
would take 2,511 cycles. Each time a string of 20 characters
is output, the 80C286 will save 612 clock cycles; an 80C286

performance increase of almost 25%. The advantage is real-
ized through the 80C286's faster interrupt handling, faster 1/0
instructions, faster FAR transfer instructions, and faster
register saving and restoring instructions.

7-52

Application Note 121

EXAMPLE 3

This example adds all the values of a source array in
memory to the values of a destination array in memory. The
result is stored in the destination array. Both arrays are

ber of words in the array), offset of source array, and offset of
destination array are all assumed to be placed on the stack
(in that order) by the calling program. The source code for

assumed to be in the current data segment. The count (num-

the procedure is listed below:

80C286 80386SX
CLOCK CYCLES CLOCK CYCLES ADD_ARRAY PROC NEAR
17 18 PUSHA ; save caller’s registers.
2 MOV BP, SP ; Point BP to current stack
5 4 MOV CX, (bp+22) ; Load array size from stack
; into CX.
5 4 MOV SI, (bp+20) ; Load offset of source array
; from stack into SI.
5 4 MOV DI, (bp+18) ; Load offset of destination
; array from stack into DI.
2 2 CLD ; Clear Direction Flag.
5 5 NEXT: LODSW ; Load the source word into AX.
7 7 ADD (DI), AX ; Add source to destination.
3 2 ADD DI, 02 ; Point DI to next data.
8/4 11 LOOP NEXT ; Continue to ADD all elements
; in the two arrays.
19 24 POPA ; Restore Registers
11 10 RET 6 ; Near return.
; Following is the code necessary to set up and call the above procedure.
5 5 PUSH count ; Put count parameter on stack
3 2 PUSH offset S_ARRAY ; Put offset of source array
; on stack.
3 2 PUSH offset D_ARRAY ; Put offset of destination
; array on stack.
7 7 CALL ADD_ARRAY ; Near Call to initiate
; ADD_Array procedure.
84+(23*CX)-4 84+(25*CX) Total number of clocks to start and end routine.
+Number of additional clocks for each item in array to be added.

EXAMPLE 3.

Both processors take the same number of clock cycles for
initialization before the call and closing up after the call (84).
The loop that does the adding is faster on the 80C286. To
add two 100 word arrays, the 80C286 would take 2,380 clock

cycles; the 80386SX takes 2,584 (an additional 204 clocks)
to execute the same routine. In this example, the LOOP
instruction gives the 80C286 the performance advantage
over the 80386SX.

7-53

Application Note 121

EXAMPLE 4

This procedure is an example of an operating system
procedure developed for a protected mode multi-privilege
level system. The procedure INIT_SEGMENT is passed a
segment selector on the stack and will load that entire
segment with zero's. The procedure is designed to execute

allows procedures executing at any level to utilize the
INIT_SEGMENT procedure. INIT_SEGMENT provides
protection checks to ensure that the procedure passing the
parameter has valid access to the segment that it is trying to
initialize. This prevents a procedure at privilege level three

at privilege level zero with a call gate at privilege level 3; this from initializing a segment at privilege level zero.

80C286 80386SX
CLOCK CYCLES CLOCK CYCLES INIT_SEGMENT PROC FARWC =1
17 18 PUSHA ; save caller’s registers.
3 2 PUSH ES ; save ES register.
2 2 MOV BP, SP ; Point BP to top of stack.
5 4 MOV AX, (BP+22) ; Load AX with segment selector
; passed as parameter on stack.
5 4 MOV BX, (BP+20) ; Load BX with return CS to
; determine caller’'s CPL.
10 20 ARPL AX, BX ; Adjust the Privilege level of
; the segment selector according
; to the caller’'s CPL.
16 16 VERW AX ; Test for valid write access
3/7 3/7 JNE ERROR ; If no valid access go to error.
17 18 MOV ES, AX ; LOAD ES with segment to be
; initialized.
14 20 LSL CX, AX ; Load segment size into CX.
2 2 XOR DI, DI ; Load zero into DI.
2 2 XOR AX, AX ; Load zero into AX.
2 2 CLD ; Clear decrement flag.
4+3*Cx 5+5*cx REP STOSB ; Init entire segment to 00.
2 2 CLC ; Clear carry to indicate segment
; initialized with no errors.
20 21 DONE: POP ES ; Restore ES register.
19 24 POPA ; Restore Register
55 72 RET 2 ; Ret FAR to different privilege
2 2 ERROR: STC ; SET carry to indicate error.
7 7 JMP DONE
; Code to push selector on stack and initiate INIT SEGMENT via call gate.
3 2 PUSH DATA_SELECTOR ; Place Selector on stack.
82 98 CALL INIT_SEGMENT_GATE ; Instruction to initiate
- - ; INIT SEGMENT procedure.
253 299 Total clocks if ERROR because segment not accessible.
283+(3*S) 377+(5*S) Total number of clocks if segment is initialized to zeros. “S” represents size of segment in
bytes.

EXAMPLE 4.

This example shows that when executing instructions used
for privilege verification and privilege level transitions the
80C286 is faster than the 80386SX. Without taking the
LODS instruction into account, the 80C286 is 54 clock

cycles faster when executing the same procedure. With the
LODS instruction, and assuming a segment size of 100
bytes, the 80C286 would execute this routine 254 clock
cycles faster than the 80386SX.

7-54

Application Note 121

EXAMPLE 5

This Procedure is a task dispatcher that is invoked via an
interrupt to cause a task switch to occur. This procedure
utilizes a circular linked list of the tasks that need to be
executed. A pointer called “CURRENT_TASK” points to the
data structure for the current task being executed. The data
structure contains the TSS for the task it is describing and a
NEXT field that points to the data structure of the next task in
the list to be executed. When the Task Dispatcher is invoked

it switches the current pointer to the next task in the list and
then invokes the new task by jumping to the TSS for that
task. The data structure for the linked list is illustrated below.

The task dispatcher is actually a separate task that is
invoked via an interrupt that signals that a new task should
be initiated. Following is a listing for the simple task
dispatcher.

TSS1_SEL TSS2_SEL TSS3_SEL
CURRENT_TASK > » »
NEXT_PTR - NEXT_PTR __J NEXT_PTR
80C286 80386SX
CLOCK CYCLES CLOCK CYCLES TASK_DISPATCH PROC FAR
5 4 START: MOV BX, CURRENT TASK + 2 ; Load BX with contents of next
; field of current TASK. BX will
; contain the address of the data
; structure for next task to run
3 2 MOV CURRENT TASK, BX ; Update Current Task to point to
; new task to be executed.
178 294 JMP DWORD PTR (BX-2) ; Start new task by jumping to TSS
7 7 JMP START ; JUMP to start for next time the
; TASK dispatcher is invoked.
193 307
EXAMPLE 5.

The advantage of the 80C286 in this case is in the faster

task switch instruction. The task switch instruction is 116
clock cycles faster on the 80C286 than on the 80386SX.

This performance increase makes the 80C286 the clear
choice for multi-tasking applications.

7-55

Application Note 121

Appendix

This appendix contains a table directly comparing the
number of clock cycles necessary to execute all the instruc-
tions available on both the 80C286 and the 80386SX. The
table includes several addressing modes of each instruction.

The table has five columns. The first column list the
instruction being compared. The second column lists the
number of clock cycles that the 80C286 needs to execute
that instruction. The third column lists the number of clock
cycles needed by the 80386SX to execute the same instruc-

APPENDIX TABLE

tion. The fourth column divides the number of cycles needed
by the 80386SX by the number of cycles needed by the
80C286. If this figure is greater than one, (see fifth column)
then the 80C286 is faster than the 80386SX. For example, a
2.0 would indicate the 80C286 executes the same instruc-
tion twice as fast as the 80386SX. A 1.0 indicates that both
processors execute the instruction in the same number of
cycles. A number less than one indicates the 80386SX is
faster than the 80C286.

NUMBER CLOCKS NUMBER CLOCKS 80C286-16 FASTER
TO EXECUTE ON TO EXECUTE ON 80386SX/ THAN OR EQUAL
80C286 INSTRUCTION 80C286 80386SX 80C286 TO 80386SX-16

AAA 3 4 1.33 v
AAD 14 19 1.36 v
AAM 16 17 1.06 v
AAS 3 4 1.33 v
ADC reg, reg 2 2 1.00 v
ADC mem, reg 7 7 1.00 v
ADC reg, immed 3 2 0.67

ADC mem, immed 7 7 1.00 v
ADD reg, reg 2 2 1.00 v
ADD mem, reg 7 7 1.00

ADD reg, immed 3 2 0.67

ADD mem, immed 7 7 1.00 v
AND reg, reg 2 2 1.00 v
AND mem, reg 7 7 1.00 v
AND reg, immed 3 2 0.67

AND mem, immed 7 7 1.00 v
ARPL reg, reg 10 20 2.00 v
ARPL mem, reg 11 21 191 v
BOUND (no interrupt) 13 10 0.77

CALL immed (near) 7 7 1.00 v
CALL immed (far real mode) 13 17 1.31 v
CALL immed (far PVAM) 26 42 1.61 v
CALL gate (same privilege PVAM) 41 64 1.56 v
CALL gate (different privilege PVAM) 82 98 1.19 v
CALL TSS (Task Switch PVAM) 177 285 1.61 v
CALL task_gate (Task Switch PVAM) 182 297 1.63 v
CBW 2 3 1.50 v
CLC 2 2 1.00 v
CLD 2 2 1.00 v
CLI 3 8 2.67 v
CLTS 2 5 2.50 v
CMC 2 2 1.00 v
CMP reg, reg 2 2 1.00 v
CMP mem, reg 6 5 0.83

7-56

Application Note 121

APPENDIX TABLE (Continued)

NUMBER CLOCKS

NUMBER CLOCKS

80C286-16 FASTER

TO EXECUTE ON TO EXECUTE ON 80386SX/ THAN OR EQUAL
80C286 INSTRUCTION 80C286 80386SX 80C286 TO 80386SX-16

CMP reg, immed 3 2 0.67

CMP mem, immed 6 5 0.83

CMPS 8 10 1.25 v
CWD 2 2 1.00 v
DAA 3 4 1.33 v
DAS 3 4 1.33 v
DEC reg 2 2 1.00 v
DEC mem 7 6 0.86

DIV word, reg 22 22 1.00 v
DIV word, mem 25 25 1.00 v
ENTER immed1, immed2 (immed 2 = 6) 36 57 1.58 v
HLT 2 5 2.50 v
IDIV word, reg 25 27 1.08 v
IMUL word, mem 24 19 0.79

IN 5 12 2.40 v
INC reg 1.00 v
INC mem 6 0.86

INS 5 15 3.00 v
INT 3 (real mode) 23 33 143 v
INT immed (real mode) 23 37 1.61 v
INT immed (PVAM same privilege) 40 71 1.77 v
INT immed (PVAM different privilege) 78 111 1.42 v
INT TASK_GATE (PVAM Task Switch) 167 438 2.62 v
INTO (No Jump) 3 3 1.00 Vv
INTO (YES Jump real mode) 24 35 1.46 v
IRET (real mode) 17 24 1.41 v
IRET (PVAM same privilege) 31 42 1.35 v
IRET (PVAM different privilege) 55 86 1.56 v
IRET (PVAM task switch) 169 285 1.68 v
Jcond label (No jump) 1.00 v
Jcond label (Yes jump) 1.00 v
JMP near_label 7 7 1.00 v
JMP Far_label (real mode) 11 12 1.09 v
JMP FAR_LABEL (PVAM) 23 31 1.34 v
JMP CALL_GATE (PVAM same privilege) 38 53 1.35 v
JMP TASK_GATE (PVAM task switch) 183 298 1.63 v
JMP TSS (PVAM task switch) 178 289 1.62 v
LAHF 2 2 1.00 v
LAR reg 14 15 1.07 v
LAR mem 16 16 1.00 v
LDS (real mode) 7 7 1.00 v
LDS (PVAM) 21 23 1.33 v
LEA 0.67

LEAVE 4 0.80

7-57

Application Note 121

APPENDIX TABLE (Continued)

NUMBER CLOCKS

NUMBER CLOCKS

80C286-16 FASTER

TO EXECUTE ON TO EXECUTE ON 80386SX/ THAN OR EQUAL
80C286 INSTRUCTION 80C286 80386SX 80C286 TO 80386SX-16

LGDT 11 11 1.00 v
LIDT 12 11 0.92

LLDT reg 17 20 1.18 v
LLDT mem 19 24 1.26 v
LMSW reg 3 10 3.33 v
LMSW mem 6 13 2.17 v
LODS 5 5 1.00 v
LOOP (Jump) 8 11 1.38 Vv
LOOP (No Jump) 4 11 2.75 v
LSL reg 14 20 1.43 v
LSL mem 16 21 1.31 v
LTR reg 17 23 1.35 v
LTR mem 19 27 1.42 v
MOV reg, reg 2 2 1.00 v
MOV mem, reg 3 2 0.67

MOV reg, immed 2 2 1.00 v
MOV mem, immed 3 2 0.67

MOV seg_reg, reg (real mode) 2 2 1.00 v
MOV seg_reg, mem (real mode) 5 5 1.00 v
MOV seg_reg, reg (PVAM) 17 22 1.29 v
MOV seg_reg, mem (PVAM) 19 23 1.21 v
MOVS 5 7 1.40 v
MUL reg 21 15 0.71

NEG reg 2 2 1.00 v
NEG mem 7 6 0.86

NOP 3 3 1.00 v
NOT reg 2 2 1.00 v
NOT mem 7 6 0.86

OR reg, reg 2 2 1.00 v
OR mem, reg 7 6 0.86

OR reg, immed 3 2 0.67

OR mem, immed 7 7 1.00 v
ouT 3 10 3.33 v
OuUTS 5 14 2.80 v
POP reg 5 5 1.00 v
POP mem 5 1.40 v
POP seg_reg (real mode) 5 7 1.40 v
POP seg_reg (PVAM) 20 25 1.25 v
POPA 19 24 1.26 v
POPF 5 1.00 v
PUSH reg 0.67

PUSH mem 1.40 v
PUSH seg_reg 3 2 0.67

PUSHA 17 18 1.06 v

7-58

Application Note 121

APPENDIX TABLE (Continued)

NUMBER CLOCKS

NUMBER CLOCKS

80C286-16 FASTER

TO EXECUTE ON TO EXECUTE ON 80386SX/ THAN OR EQUAL
80C286 INSTRUCTION 80C286 80386SX 80C286 TO 80386SX-16

PUSHF 3 4 1.33 v
RCR or RCL reg, 1 2 9 4.50 v
RCR or RCL mem, 1 7 10 1.43 v
RCR or RCL reg, cl (cl = 4) 9 9 1.00 v
RCR or RCL mem, cl (cl = 4) 12 10 0.83

RCR or RCL reg, 4 9 9 1.00 v
RCR or RCL mem, 4 12 10 0.83

ROR or ROL reg, 1 2 3 1.50 v
ROR or ROL mem, 1 7 7 1.00 v
REP INS (cx = 100) 405 613 1.51 v
REP MOVS (cx = 100) 405 407 1.00 v
REP OUTS (cx = 100) 405 512 1.26 v
REP STOS (cx = 100) 304 505 1.66 v
REP CMPS (cx = 100) 905 905 1.00 v
REPE CMPS (N = 100) 905 905 1.00 v
REPE SCAS (N = 100) 805 805 1.00 v
RET (near) 11 12 1.09 v
RET (far real mode) 15 20 1.33 v
RET (far PVAM same privilege) 25 36 1.44 v
RET (far PVAM different privilege) 55 72 1.31 v
SAHF 2 3 1.50 v
SHIFT reg, 1 (SHIFT = SAL, SAR, SHR) 2 3 1.50 v
SHIFT mem, 1 7 7 1.00 v
SBB reg, reg 2 2 1.00 v
SBB mem, reg 7 6 0.86

SBB reg, immed 3 2 0.67

SBB mem, immed 7 7 1.00

SCAS 7 7 1.00 v
SGDT 11 9 0.82

SIDT 12 9 0.75

SLDT reg 2 2 1.00 v
SLDT mem 3 2 0.67

SMSW reg 2 2 1.00 v
SMSW mem 3 2 0.67

STC 2 2 1.00 v
STD 2 2 1.00 v
STI 2 3 1.50 v
STOS 3 4 1.33 v
STR reg 2 22 1.00 v
STR mem 3 2 0.67

SUB reg, reg 2 2 1.00 v
SUB mem, reg 7 7 1.00 v
SUB reg, immed 3 2 0.67

SUB mem, immed 7 7 1.00 v

7-59

Application Note 121

APPENDIX TABLE (Continued)

NUMBER CLOCKS

NUMBER CLOCKS

80C286-16 FASTER

TO EXECUTE ON TO EXECUTE ON 80386SX/ THAN OR EQUAL

80C286 INSTRUCTION 80C286 80386SX 80C286 TO 80386SX-16
TEST reg, reg 2 2 1.00 v
TEST mem, reg 6 5 0.83
TEST reg, immed 3 2 0.67
TEST mem, immed 6 5 0.83
VERR reg 14 10 0.71
VERR mem 16 11 0.69
VERW reg 14 15 1.07 v
VERW mem 16 16 1.00 v
WAIT 3 6 2.00 v
XCHG reg, reg 3 3 1.00 v
XCHG reg, mem 5 5 1.00 v
XLAT 5 5 1.00 v
XOR reg, reg 2 2 1.00 v
XOR mem, reg 7 6 0.86
XOR reg, immed 3 2 0.67
XOR mem, immed 7 7 1.00 v
TOTAL number clocks to execute all instructions 6894 8664
AVERAGE 1.25
Number of Instructions faster on 80C286 79
Number of Instructions equal on both processors 64
Number of Instructions faster on 80386 39
Total Number of instructions analyzed 182

7-60

