
The IBM 6x86 and 6x86L
Microprocessor Architecture
Delivering Next-Generation Performance on
Today's Installed Base

Page 1 of 9
 January 17, 1997

Fax #40200

Application Note

 Revision Summary: This revision contains minor corrections and
 changes in terminology.

®

Introduction
As the desktop PC takes on more and more sophisticated tasks, such as multimedia, imaging,
high-end desktop publishing and statistical modeling, the need for processing power increases
dramatically. To meet that demand, a new generation of microprocessors is entering the market-
place. Designed to deliver processing power that is many times greater than the venerable 486,
these processors utilize architectures that differ substantially from that of their x86 predecessors.
These new processor architectures fall into two broad groups, those that have adopted a RISC-
based architecture, and those that are pushing the x86 performance envelope.

The RISC-based architectures use a reduced instruction set to achieve their performance. To get
the promised performance out of the RISC-based architectures, users must run software applica-
tions written and optimized for that architecture. Existing x86 applications must be run in emula-
tion mode, which reduces performance. These requirements, together with the additional
instructions present in the x86 architecture, reduce the price/performance margin of these RISC
architectures.

Intel's Pentium® is an evolution of Intel's x86 family, utilizing a superscalar architecture with
multiple integer units to achieve its performance. As a development of the x86 family, it avoids
the pitfall of the RISC-based architectures by remaining compatible with applications compiled for
the x86 instruction set. However, because it relies on instruction reordering by a compiler, the
performance gain is lost to any applications not compiled specifically for the Pentium.

The IBM 6x86 and 6x86L processor architectures are a revolutionary advancement of previously
available x86 processors, utilizing both superscalar and superpipelined technologies to achieve
high performance. Like the Pentium processor, it is fully x86 instruction set compatible. Unlike
the Pentium processor, the IBM 6x86 and 6x86L processors implement a complex dependency
removal scheme that allows it to deliver many times the performance of the 486 processor. This
performance margin represents a gain of 30% over the Pentium processor at identical clock rates
when running from the installed base of expensive software, giving the IBM 6x86 and 6x86L
processors a wide price/performance margin over the Pentium and RISC-based architectures.

High-Performance Processor Architectures
Simply driving up the clock rate on a 486 architecture cannot achieve the kind of significant
performance increase necessary to meet the demands of the new marketplace. The conventional
x86 microprocessor architecture presents too many execution obstacles to allow major perform-
ance gains from clock speed increases alone. Instead, the basic architecture of the microprocessor
must be changed to improve instruction execution and allow the processing units to take full
advantage of high clock rates. The two basic architectures which provide this kind of performance
increase are the superscalar architecture and the superpipelined architecture.

Superscalar processor architectures use instruction parallelism - executing two separate instruc-
tions at the same time - to reduce the amount of time the processor spends executing the series of
instructions required to complete a task. This provides the potential of doubling performance at
any given clock rate, as it effectively adds another processor running in parallel.

Page 2 of 9
 January 17, 1997

Fax #40200

Superpipelined architectures take the conventional pipelined architecture, where the instruction
execution cycle is broken up into several distinct stages that perform particular tasks, and increase
the number of stages. By refining the tasks executed in each stage and implementing more stages,
the processor can take full advantage of very high clock rates. Superpipelining doubles the
processor's clock rate providing the potential for doubling processor performance.

The optimal performance increase is achieved by combining the superscalar and superpipelined
architectures into a single architecture, where two instructions are executed in parallel superpipe-
lines at very high clock rates.

High-Performance Obstacles
If achieving high performance processors were merely a matter of designing a superscalar, super-
pipelined architecture running at very high clock rates, all microprocessors would be essentially
the same. Unfortunately, the issues involved in implementing superscalar, superpipelined architec-
tures present a number of complex barriers to maximizing the potential of those architectures.

Control and data dependencies represent a significant barrier to efficient use of the superscalar
or superpipelined architectures. With two instructions executing in parallel, any dependency
between the two instructions can result in a stall, where the dependent instruction is stuck in
the pipeline until the data or resource it requires becomes available. Instruction dependencies can
include any situation where one instruction requires the operand, result, or data from an
instruction executing near it in the pipeline. While an instruction is stalled in a pipeline, a bubble
forms below it, as portions of the pipeline are left unused for a number of clock cycles. Stalls
greatly reduce the performance of superscalar, superpipelined architectures.

Change of program flow (COF) instructions result in additional performance degradation in
superscalar or superpipelined architectures. If an instruction is a change of flow instruction such
as a jump, conditional branch, or call instruction, and the result of that instruction causes the
program to need an instruction other than the one immediately following the current stream, the
current instruction must be cleared and the new instructions fetched. All of this requires time, and
effectively wastes the pipeline, which reduces the performance of the processor, especially in
superpipelined or superscalar architectures.

Resource conflicts are also detrimental to the performance of superscalar or superpipelined
architectures. The x86 architecture uses eight logical registers. If two instructions are executing
down identical pipelines, there is a chance they will require access to the same register at the same
time, creating a resource conflict. This situation results in a stall while one instruction waits to
access the contested register. The stall creates a bubble, just as in control and data dependencies.

Problematic Solutions
To maximize the use of a superscalar or superpipelined microprocessor, dependencies and
resource conflicts must be eliminated, and a mechanism for handling COF without degrading
performance must be implemented. There are a number of solutions to these issues, but the
solutions are not without problems of their own.

Page 3 of 9
 January 17, 1997

Fax #40200

New Software that replaces or adds to the existing installed base of software with applications
designed specifically for the new architecture ensures optimal use of the available processing
power. New software eliminates many of the conflicts resulting from dependencies, COF, and
resource conflicts because it utilizes a new tool set. This approach off-loads the responsibility for
maximizing the performance of the new architecture from the microprocessor developer onto the
third-party software vendor. The third-party vendor then passes as much of the development
burden as possible on to the end-user with an increase in total system cost. The price/performance
margin of this type of solution severely limits the success of unique architectures. Additionally,
software developed for unique architectures loses its appeal by its incompatibility with the millions
of users who already have x86-based PCs.

Recompilation of existing software and hardware achieves much of the same benefit as replace-
ment, as it allows for optimizing the source code to work with a specific processor. The optimiza-
tion process removes many dependencies and resource conflicts, as well as fine-tuning COF
controls. However, recompilation again shifts the burden from the processor developer onto the
third-party software or compiler developer and the end-user. The time and resources committed
to recompilation, including the necessary QA, repackaging, and marketing efforts drive down the
price-performance margin and reduce the attractiveness of the new architecture to the end-user,
who must still purchase software upgrades in order to achieve the promised performance. The
hidden cost of software upgrades can easily add thousands of dollars to the end-user's cost. This is
the path that was chosen for the Pentium processor.

Emulation of the x86 architecture is a path followed by some RISC-based architectures to gain
access to the installed base of software without recompilation. Emulation cannot match the
performance of execution in x86 native mode. New architectures typically lose much of their
performance gain over previous designs when they are forced to run in emulation mode. While
the price/performance margin of the machine itself is attractive, the performance achievable by the
end users with their existing software is reduced when running in emulation mode. The cost of
developing software to run on the machines further reduces the attractiveness of these new
architectures.

Architectural enhancement is the path that has been chosen for the 6x86 processor family.
Making architectural enhancements to the new processor design provides all of the advantages of
recompilation dependency removal, reduction of resource conflicts and better COF control
without raising compatibility barriers or off-loading the development burden to software vendors
and the end-user. This approach provides access to the installed base of software while delivering
improved performance at reasonable cost. This also delivers significant performance increases
with existing software, without delays in availability and additional costs associated with software
upgrades.

Page 4 of 9
 January 17, 1997

Fax #40200

A High-Performance Solution
To solve the problems involved in running the installed base of software and the upcoming
generation of applications on a superscalar, superpipelined architecture requires more than an
edict for recompilation or emulation. What is needed is a microprocessor combining the existing
architecture with built-in hardware to eliminate or reduce dependencies and resource conflicts,
while still delivering high performance at a competitive price. The IBM 6x86 and 6x86L proces-
sor architecture achieves this solution.

Data dependencies are nearly eliminated. Dynamic, transparent register renaming, combined with
an extended set of 32 general purpose registers, nearly eliminates resource conflicts. The IBM
6x86 and 6x86L processor's register renaming scheme removes both Write-After-Read (WAR)
and Write-After-Write (WAW) dependencies, and allows the resolution of Read-After-Write
(RAW) dependencies.

Data forwarding removes data dependencies between instructions normally requiring serialization.
By forwarding the operand or result from the "leading" instruction to the "following" instruction,
data forwarding allows the instructions to execute in parallel. This eliminates serialization stalls.
Data forwarding removes most RAW "true" dependencies. Data bypassing allows a memory or
register operand to be passed directly to the next instruction, without waiting for the memory
location or register to be updated, further reducing RAW "true" dependencies.

Control dependencies are also reduced. Branch prediction speeds instruction execution by
predicting the program flow change that will result from a conditional branch instruction. This
eliminates the need to wait until a COF instruction has executed before fetching the next instruc-
tion. Provided the predictions are correct, the processor can keep the pipeline full. If the predic-
tion is incorrect, however, the pipeline must be cleared of the incorrect instruction before the
correct instruction can be executed. Branch prediction, by itself, provides a performance increase
at some risk.

Speculative execution greatly enhances the benefits of branch prediction. Speculative execution
allows the processor to execute the predicted instruction flow as if it were the correct one. The
IBM 6x86 and 6x86L processor architecture goes beyond conventional speculative execution by
continuing to predict COF branches and fetching instructions based on those predictions. The
IBM 6x86 and 6x86L processor can speculatively execute past four COF branches or floating
point operations without stalling, while maintaining precise exception for floating point
operations. The risk still exists that the predicted branch will be the wrong one. If that is the case,
the processor must not only repair the branch instruction, but also any speculatively executed
instruction. Any intermediate results must also be undone or repaired. The IBM 6x86 and 6x86L
processor architectures implement a sophisticated repair scheme which eliminates this.

Transparent repair of prediction errors allows the processor to clear the pipeline of the incorrect
instruction and resume processing on the correct instruction in the amount of time required to
clear a single branch prediction made without speculative execution. This means that the IBM
6x86 and 6x86L processor can reap the benefits of speculative execution of up to four COF
branches while incurring no more penalty than the more pedestrian architectures that merely guess

Page 5 of 9
 January 17, 1997

Fax #40200

at COF results. These branch control schemes mean that the IBM 6x86 and 6x86L processor
architecture achieves a throughput of one clock cycle for correctly predicted branches, while
incurring no additional penalty for incorrect predictions.

Optimal pipeline utilization is achieved by two methods, one at instruction issue and one at
instruction execution. Intelligent instruction issuing minimizes bubble formation and allows for
bubble squashing. In most advanced architectures, an instruction that has an inter-instruction
dependency may be stalled by the processor at issue time, before it stalls on its own in the
pipeline. With intelligent instruction issuing, instructions are allowed to move as far down the
pipeline as possible, until they stall as a result of a dependency or an instruction stalls ahead of
them. With the architecture's advanced mechanisms to dynamically remove dependencies, this
means that most stall conditions never actually occur.

In addition, only a small group of instructions has any issuing constraints. These include COF,
floating point, and exclusive instructions, which are restricted to using the X-pipe. Change of flow
and floating point instructions allow integer instructions to use the Y-pipe while they execute in
the X-pipe. Exclusive instructions utilize the processing power of both pipelines to accelerate
execution. Exclusive instructions are those that may fault during execution, typically those involv-
ing multiple memory accesses. In addition, intelligent instruction issuing implements load
balancing between the X and Y pipelines in an effort to minimize any dependencies.

Out of order execution allows instructions to complete independently of each other, thereby
preventing a stall in one pipeline from forcing a stall in the other. Bus cycles are issued and excep-
tions are generated in program order.

The Right Combination
The IBM 6x86 and 6x86L processor architecture is a superscalar, superpipelined architecture
capable of operating at very high clock rates. The architecture's sophisticated schemes for reduc-
ing dependency and conflict are implemented in hardware, allowing it to deliver performance
increases of roughly 2.5 times that of the 486 architecture operating at an identical clock rate, and
a gain of 40% - 60% over the Pentium processor at an identical clock rate when running today's
unrecompiled applications. This architectural advantage, coupled with the aggressive clock rates
targeted for the IBM 6x86 and 6x86L microprocessor, yields up to 5x the performance of a
486-50, and up to 2 times that of a current Pentium processor.

The IBM 6x86 and 6x86L processor architecture also provides more than twelve times the
performance of a typical RISC-based architecture running existing x86 software in emulation
mode. The IBM 6x86 and 6x86L processor architecture will enjoy a wide price/performance
margin over the Pentium processor and RISC-based architectures.

Page 6 of 9
 January 17, 1997

Fax #40200

The IBM 6x86 and 6x86L Microprocessor Architecture

The IBM 6x86 and 6x86L processor architecture is a high performance x86 processor architec-
ture bridging the need for performance and compatibility with today's 16-bit applications to the
potential of tomorrow's 32-bit applications. The IBM 6x86 and 6x86L processor architecture
comprises five basic elements:

Y Integer Unit
Y Cache
Y Memory Management Unit
Y Bus Control
Y Floating Point Unit

Integer Unit
The IBM 6x86 and 6x86L processor architecture utilizes two, seven-stage integer pipelines, the
X-pipe and the Y-pipe. Each pipeline comprises a prefetch stage, two decode stages (D1, D2),
two address calculation stages (AC1, AC2), an execute stage, and a write-back stage.

Prefetch fetches up to 16 bytes (four instructions) per bus clock. Branch Target Buffer (BTB)
checks and branch predictions are performed during the prefetch cycle to fetch instructions from
the predicted path.

Decode determines the instruction length (D1), decodes the instruction, and determines the
optimal pipeline in which to execute the instruction (D2).

Address calculation calculates up to two effective addresses per clock cycle, performs register
renaming, and makes scoreboard checks (ACl). The second address calculation stage (AC2)
performs Translation Lookaside Buffer (TLB), cache, and register file accesses, as well as
performing segmentation and paging checks.

Execution performs ALU operations and MUL/DIV instructions.

Write-back writes to the register file and write buffers, and updates the machine state.

Cache
The IBM 6x86 and 6x86L processor architecture contains a large, on-chip, 4-way set associative,
unified instruction/data cache as the primary data cache and secondary instruction cache, and a
256-byte, fully set associative, instruction line microcache that is the primary instruction cache.
When coupled with the instruction line microcache, this architecture provides a greater hit rate
over a wider percentage of applications than architectures dedicating half the cache to instructions
and half to data.

The unified cache is dual-ported to allow for two simultaneous fetches, reads, writes, or combi-
nations of any two. Again, when coupled with the primary instruction line microcache, this gives

Page 7 of 9
 January 17, 1997

Fax #40200

the IBM 6x86 and 6x86L processor architecture a cache bandwidth similar to Harvard-style
caches while retaining the advantages of the superior hit rate.

Memory Management Unit
The IBM 6x86 and 6x86L processor architecture is fully x86 compatible, so the memory manage-
ment unit adheres to the standard segmentation and paging mechanisms.

Bus Controller
The IBM 6x86 and 6x86L processor architecture logically isolates the bus control unit. This isola-
tion provides for wide product flexibility in order to address specific market needs.

Floating Point Unit
The IBM 6x86 and 6x86L processor architecture contains a built-in, 64-bit, enhanced
x87-compatible floating point unit. The FPU is IEEE-754 compatible and utilizes the x87 instruc-
tion set.

The IBM 6x86 and 6x86L processor architecture contains a single floating point pipeline,
enhanced by a four-instruction queue and independent, 64-bit write buffers. This scheme
provides several key advantages. Floating point operations appear as a single-clock instruction
to the integer pipeline and, while they themselves must traverse the X-pipeline, they allow any
integer instruction to be simultaneously paired in the Y-pipeline, providing parallel execution. The
processor architecture also allows out-of-order execution of integer instructions relative to float-
ing point instructions, and speculative execution of up to four floating point instructions. Because
floating point instructions are speculatively executed, precise exceptions - an x86 software
compatibility requirement - can be maintained without creating stalls due to multiple floating point
instructions. The following table lists some comaprisons:

xOut-of-Order Execution

xSpeculative Execution

xxBranch Prediction

xData Forwarding

xRegister Renaming

832GP Registers

xSuperpipelined

xxMultiple Integer Units

xxSuperscalar

xxx86 Instruction Set

INTEL PENTIUM
PROCESSOR

IBM 6x86 and 6x86L
PROCESSOR

FEATURE

Table 1. Feature Comparison

Page 8 of 9
 January 17, 1997

Fax #40200

Summary

The IBM 6x86 and 6x86L processor architecture is a revolutionary advancement of the x86
family of microprocessors, utilizing both superscalar and superpipelined technologies to achieve
high performance. The architecture not only overcomes such performance barriers as data
dependencies, change of flow instructions and resource conflicts, but also brings the end user a
superior performance advantage without the added cost of purchasing recompiled software. As
the desktop PC takes on more and more sophisticated tasks, IBM continues to provide micro-
processor solutions that bring cost effective power to the end user.

� Copyright IBM Corporation 1995, 1997. All rights reserved.
IBM and the IBM logo are registered trademarks of International Business Machines Corporation.
IBM Microelectronics is a trademark of the IBM Corp.
6x86 and 6x86L are trademarks of Cyrix Corporation.
Pentium is a register trademark of Intel Corporation.
Other company, product or service names, which may be denoted by a double asterisk (**), may be trademarks or
service marks of others.

The information contained in this document is subject to change without notice. The products described in this
document are NOT intended for use in implantation or other life support applications where malfunction may
result in injury or death to persons. The information contained in this document does not affect or change IBM's
product specifications or warranties. Nothing in this document shall operate as an express or implied license or
indemnity under the intellectual property rights of IBM or third parties. All the information contained in this
document was obtained in specific environments, and is presented as an illustration. The results obtained in other
operating environments may vary.

IBM makes the software language contained in this document available solely for use on an as is basis without
warranty of any kind. By using the software language you agree to use the software language at your own risk. To
the maximum extent permitted by law, IBM disclaims all warranties of any kind either express or implied, includ-
ing, without limitation implied warranties of merchant ability and fitness for a particular purpose. IBM is not
obligated to provide any updates to the software language.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS.
In no event will IBM be liable for any damages arising directly or indirectly from any use of the information
contained in this document.

Page 9 of 9
 January 17, 1997

Fax #40200

