
United States Patent (19)
Amini et al.

54

(75)

73)

21)

22

63
51
52

58)

56

BDRECTIONAL DATABUFFER FOR A
BUS-TO-BUSINTERFACE UNT INA
COMPUTER SYSTEM

Inventors: Nader Amini; Bechara Fouad Boury;
Sherwood Brannon, all of Boca Raton;
Richard Louis Horne, Boynton Beach;
Terence Joseph Lohman, Boca Raton,
all of Fla.

International Business Machines
Corporation, Armonk, N.Y.

Assignee:

Appl. No.:
Filed:

282,159

Jul. 28, 1994

Related U.S. Application Data

Continuation of Ser, No. 816,691, Jan. 2, 1992, abandoned.
Int, C. m.n.m. GO6F 13/00
U.S. Cl. 395/250; 395/840; 395/878;

395/308; 395/481; 364/239
Field of Search 395/250, 275,

395/280, 258, 840, 878, 308, 481; 364,239

References Cited

U.S. PATENT DOCUMENTS

8/1980 Bennett et al. 364/200
3/1981 Heath 364/200
11/1981 Bigelow et al. 395/250
2/1986 Burers et al. .. 364/200
8/1986 Furukawa et al. . 364/200
10/1987 Irwin 364/200
5/1989 Rubinfeld et al. 364/200
10/1989 Johnson et al. 395,425

4218,740
4,258,418
4,298,954
4,571,671
4,607,328
4,703,420
4,831,520
4,878,166

25C

TO SYSTEM BUS
CONTROLLER BugER

6 BYTES
ADDR

TO SYSTEM BUS
ADDRESS GENERATION

CIRCUIT

BU,FER
6 BYTES

FIFO

TO
BUS TO BUS PACNG

CONTROL

CONTROL
CIRCUIT

US005644729A

11 Patent Number: 5,644,729
45 Date of Patent: Jul. 1, 1997

4,979,097 12/1990 Triolo et al. 364/200
4,982,321 1/1991 Pantry et al. 364/200
5,003,465 3/1991 Chisholm et al. 364/200
5,097,410 3/1992 Hester et al. 295/275
5,097,437 3/1992 LOrson 395/775
5,117,486 5/1992 Clark et al. 395/250
5,155,810 10/1992 McNamara et al. 395/250
5,179,663 1/1993 Zimura 395/250
5202,969 4/1993 Sato et al. 395,425
5,224,213 6/1993 Diefenderfer et al. 395/250
5,283,883 2/1994 Mishler 395/425
5,301,343 4/1994 Alvarez 395/800
5,327,545 7/1994 Begun et al. 395/425
5,345,559 9/1994 Okazaki et al. 395/250

FOREIGN PATENT DOCUMENTS

O 311 704 10/1987 European Pat. Off. G06F 13/14
0.380 844 6/1989 European Pat. Off. G06F 9/46
O 365 116 7/1989 European Pat. Off. GO6F 13/16

Primary Examiner-Christopher B. Shin
Attorney, Agent, or Firm-Calfee, Halter & Griswold LLP
57 ABSTRACT

A method and system are provided for controlling data
transfer between a system memory connected to a system
bus and at least one input/output (I/O) device connected to
an I/O bus in a computer system. The system bus is coupled
to the I/O bus by a bus interface unit comprising a first pair
of buffers connected in series between the I/O bus and the
system bus, and a second pair of buffers connected in series
between the I/O bus and the system bus and in parallel with
the first pair of buffers. Each of the buffers in each of the
pairs is used for bidirectional data transfer between the
system bus and the I/O bus.

11 Claims, 5 Drawing Sheets

25A -124

BUFER
16 BYTES
ADDR

BuFER
16 BYTES

TO /O BUS SLAVE
INTERFACE

TO /O BUS EXPECTED
ADDRESS GENERATION
CIRCUIT

LOGIC

U.S. Patent Jul. 1, 1997 Sheet 1 of 5 5,644,729

42 56 54 52 40 38 16 10
A (- girlf supe

st N. 54
52
50 44

CONTROL ADDR

BUFFER - BUFFER FREQUENCY

MEMORY
ONTROLLER

CONTROLLER
CACP

62

F.G. 1

U.S. Patent Jul. 1, 1997 Sheet 2 of 5 5,644,729

64
102 O6 y 104.

SYSTEM BUS
TO /O BUS

DRIVER / TRANSiTION DRIVER /
RECEIVER RECEIVER

SYSTEM
BUS

f 18

- - - - -

SYSTEM BUS
ADDRESS

GENERATION
CIRCUIT

CACHE
SNOOPNG
LOGC

112
108

120

AO BUS
EXPECTED ADDR.

GENERATION
CIRCUIT

FIFO /SES
BUFFER INTERFACE

SYSTEM BUS
CONTROLLER
INTERFACE

BUS TO BUS
PACNG

CONTROL LOGIC
22 126

5,644,729 Sheet 3 of 5 Jul. 1, 1997 U.S. Patent

G3.103dX3 Sn8 0/1 01

5,644,729 Sheet 5 of 5 Jul. 1, 1997 U.S. Patent

XOOTO

89 ||09|| AldW3 0 83 d?[18]

TVN9?S

SC)ZZ !

5,644,729

BDIRECTIONAL DATABUFFER FOR A
BUS-TO-BUS INTERFACE UNT ENA

COMPUTER SYSTEM

This is a continuation of application Ser. No. 07/816,691,
filed on Jan. 2, 1992, now abandoned.

RELATED APPLICATIONS

The following United States patent applications are incor
porated herein by reference as if they had been fully set out:

application Ser. No. 07/815,992 Filed Jan. 2, 1992,
Entitled “BUS CONTROLLOGICFOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITECTURE",
now U.S. Pat. No. 5,544,346

application Ser. No. 07/816,116 Filed Jan. 2, 1992,
Entitled ARBTRATION CONTROL LOGIC FOR
COMPUTER SYSTEM HAVING DUAL BUS
ARCHITECTURE", now U.S. Pat. No. 5,265,211.

application Ser. No. 07/816,184 Filed Jan. 2, 1992,
Entitled PARITY ERROR DETECTION AND
RECOVERY”, now U.S. Pat. No. 5,313,627

application Ser. No. 07/816.204 Filed Jan. 2, 1992,
Entitled “CACHESNOOPING AND DATANVAL
DATION TECHNIQUE" (Further identified as Attor
ney Docket BC9-91-092).

application Ser. No. 07/816.203 Filed Jan. 2, 1992,
Entitled “BUS INTERFACE LOGC FOR COM
PUTER SYSTEM HAVING DUAL BUS
ARCHITECTURE", now U.S. Pat. No. 5.255,374

application Ser. No. 07/816,693 Filed Jan. 2, 1992,
Entitled "BUS INTERFACE FOR CONTROLLING
SPEED OF BUS OPERATION” (Further identified as
Attorney Docket BC9-91-106).

application Ser. No. 07/816,698 Filed Jan. 2, 1992,
Entitled 'METHOD AND APPARATUS FOR
DETERMININGADDRESS LOCATION ATBUSTO
BUS INTERFACE" (Further identified as Attorney
Docket BC9-91-107).

1. Field of the Invention
The present invention relates to bus to bus interfaces in a

computer system having dual bus architecture, and more
particularly to a bus to bus interface unit and method for
temporarily storing data being transferred between two
buses of the system.

2. Background of the Invention
Generally in computer systems and especially in personal

computer systems, data is transferred between various sys
tem devices such as a central processing unit (CPU),
memory devices, and direct memory access (DMA) control
lers. In addition, data is transferred between expansion
elements such as input/output (I/O) devices, and between
these I/O devices and the various system devices. The I/O
devices and the system devices communicate with and
amongst each other over computer buses, which comprise a
series of conductors along which information is transmitted
from any of several sources to any of several destinations.
Many of the system devices and the I/O devices are capable
of serving as bus controllers (i.e., devices which can control
the computer system) and bus slaves (i.e., elements which
are controlled by bus controllers).

Personal computer systems having more than one bus are
known. Typically, a local bus is provided over which the
CPU communicates with cache memory or a memory
controller, and a system I/O bus is provided over which
system bus devices such as the DMA controller, or the I/O

5

O

15

20

25

30

35

40

45

50

55

65

2
devices, communicate with the system memory via the
memory controller. The system I/O bus comprises a system
bus and an I/O bus connected by a businterface unit. The I/O
devices communicate with one another over the I/O bus. The
I/O devices are also typically required to communicate with
system bus devices such as system memory. Such commu
nications must travel over both the I/O bus and the system
bus through the bus interface unit.

In passing data between the system bus and the I/O bus,
it is often necessary to be able to accommodate devices
coupled to one or both of said buses which operate at
significantly different speeds and in different modes of data
transfer. For example, there may be devices coupled to the
I/O bus that write in bandwidths of 1, 2 and 4 bytes. On the
other hand, the system bus may be capable of transfering 16
byte packets of information in what is known as burst
transmissions which are quite fast. Moreover, it is often
desirable to transfer a relatively large amount of data from
contiguous addresses. Such transfer would be desirable and
less time consuming if it were accomplished without having
to initiate a request specific to each address location.

Thus, it is necessary that any interconnection between the
system bus and I/O bus be able to handle data transfer at
different rates and in different modes. Further, it is desirable
that data be transferred efficiently to/from contiguous
addresses without initiating a transfer request for each
location.

Accordingly, it is an object of the present invention to
provide an efficient data buffer between a system bus and an
I/O bus which will transfer data effectively and efficiently at
different transfer rates and in different modes.

SUMMARY OF THE INVENTION

According to the present invention, a bus to bus interface
unit is provided for computer systems having dual bus
architecture, such as a system bus and an I/O bus. The bus
interface unit includes an asynchronous bidirectional tem
porary data storage function for data being transferred
between the two buses to and from devices coupled to each
of the two buses. Preferably the storage function operates in
modes that will accommodate individual transfers of data,
data streaming, and data burst transfers, and can accommo
date transfers of information from contiguous addresses
without initiating a new request for each address.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer system
incorporating a bus interface unit constructed according to
the principles of the present invention;

FIG. 2 is a schematic block diagram of the bus interface
unit of the computer system of FIG. 1;

FIG. 3 is a schematic block diagram of the FIFO buffer of
the bus interface unit of FIG. 2;

FIG. 4 is circuit diagram of the control logic used to
implement one of the embodiments of the bus to bus pacing
logic of FIG. 3; and

FIG. 5 is a circuit diagram of the control logic used to
implement another embodiment of the bus to bus pacing
logic of FIG. 3.

IDEALED DESCRIPTION OF THE
PREFERRED EMBODEMENT

Referring first to FIG. 1, a computer system shown
generally at 10 comprises system board 12 and processor
complex 14. Processor complex includes processor portion

5,644,729
3

16 and base portion 18 connected at processor local bus 20
via local bus connector 22. Processorportion 16 operates at
50 MHz and base portion 18 operates at 40 MHz.

System board 12 includes interleaved system memories
24 and 26 and input/output (I/O) devices 28. Communica
tions between memories 24 and 26 and processor complex
14 are handled by memory bus 30, and communications
between I/O devices 28 and processor complex 14 are
carried by I/O bus 32. Communications between I/O devices
and memories 24 and 26 are handled by I/O bus 32, system
bus 76 and memory bus 30. I/O bus 32 may conform to
MICRO CHANNEL(8) computer architecture. Memory bus
30 and I/O bus 32 are connected to processor complex base
portion 18 via processor complex connector 34. I/O devices
such as memory expansion devices may be connected to the
computer system 10 via I/O bus 32. System board 12 may
also include conventional video circuitry, timing circuitry,
keyboard control circuitry and interrupt circuitry (none of
which are shown) which may be used by computer system
10 during normal operation.

Processor portion 16 of processor complex 14 includes
central processing unit (CPU) 38 which, in the preferred
embodiment, is a 32-bit microprocessor available from Intel,
Inc. under the trade designation i486. Processor portion 16
also includes static random access memory (SRAM) 40,
cache control module 42, frequency control module 44,
address buffer 46 and data buffer 48. Local bus 20 comprises
data information path 50, address information path 52 and
control information path 54. Data information paths 50 are
provided between CPU 38, SRAM 40 and data buffer 48.
Address information paths 52 are provided between CPU
38, cache control module 42 and address buffer 46 Control
information paths 54 are provided between CPU 38, cache
control module 42 and frequency control module 44.
Additionally, address and control information paths are
provided between cache control module 42 and SRAM 40.
SRAM 40 provides a cache function by storing in short

term memory information from either System memories 24
or 26 or from expansion memory which is located on an I/O
device 28. Cache control module 42 incorporates random
access memory (RAM) 56 which stores address locations of
memories 24 and 26. CPU 38 may access information
cached in SRAM 40 directly over the local bus 20. Fre
quency control module 44 synchronizes operation of the 50
Mhz processor portion 16 with the 40 Mhz. base portion 18
and also controls the operation of buffers 46 and 48.
Accordingly, frequency control module 44 determines the
times at which information is captured by buffers 46 and 48
or the times at which information that is stored in these
buffers is overwritten. Buffers 46 and 48 are configured to
allow two writes from memories 24 and 26 to be stored
simultaneously therein. Buffers 46 and 48 are bi-directional,
i.e., they are capable of latching information which is
provided by the CPU 38 and information which is provided
to the CPU. Because buffers 46 and 48 are bi-directional,
processor portion 16 of the processor complex 14 may be
replaced or upgraded while maintaining a standard base
portion 18.
Base portion 18 includes memory controller 58, direct

memory access (DMA) controller 60, central arbitration
control point (CACP) circuit 62, bus interface unit 64 and
buffer/error correction code (ECC) circuit 66. Base portion
18 also includes driver circuit 68, read only memory (ROM)
70, self test circuit 72 and buffer 74. System bus 76
comprises a data information path 78, and address informa
tion path 80 and a control information path 82. The data
information path connects buffer 74 with bus interface unit

O

15

25

30

35

45

50

55

65

4
64; bus interface unit 64 with DMA controller 60 and
buffer/ECC circuit 66; and buffer/ECC circuit 66 with sys
temmemories 24 and 26. The address information path and
the control information path each connect memory control
ler 58 with DMA controller 60 and bus interface unit 64; and
bus interface unit 64 with buffer 74.
Memory controller 58 resides on both CPU local bus 20

and system bus 76, and provides the CPU 38, the DMA
controller 60 or bus interface unit 64 (on behalf of an I/O
device 28) with access to system memories 24 and 26 via
memory bus 30. The memory controller 58 initiates system
memory cycles to system memories 24 and 26 over the
memory bus 30. During a system memory cycle, either the
CPU 38, the DMA controller 60 or bus interface unit 64 (on
behalf of an I/O device 28) has access to system memories
24 and 26 via memory controller 58. The CPU 38 commu
nicates to system memory via local bus 20, memory con
troller 58 and memory bus 30, while the DMA controller 60
or bus interface unit 64 (on behalf of an I/O device 28)
access system memory via system bus 76, memory control
ler 58 and memory bus 30.

For CPU 38 to I/O bus 32 read or write cycles, address
information is checked against system memory address
boundaries. If the address information corresponds to an I/O
expansion memory address or I/O port address, then
memory controller 58 initiates an I/O memory cycle or I/O
port cycle with an I/O device 28 (via bus interface unit 64)
over the I/O bus 32. During a CPU to I/O memory cycle or
I/O port cycle, the address which is provided to memory
controller 58 is transmitted from system bus 76 to I/O bus 32
via bus interface unit 64 which resides intermediate these
two buses. The I/O device 28 which includes the expansion
memory to which the address corresponds receives the
memory address from I/O bus 32. DMA controller 60 and
the bus interface unit 64 control the interchange of infor
mation between system memories 24 and 26 and expansion
memory which is incorporated into an I/O device 28. DMA
controller 60 also provides three functions on behalf of
processor complex 14. First, the DMA controller 60 utilizes
a small computer subsystem control block (SCB) architec
ture to configure DMA channels, thus avoiding the necessity
of using programmed I/O to configure the DMA channels.
Second, DMA controller provides a buffering function to
optimize transfers between slow memory expansion devices
and the typically faster system memory. Third, DMA con
troller 60 provides an eight channel, 32-bit, direct system
memory access function. When providing the direct system
memory access function, DMA controller 60 may function
in either of two modes. In a first mode, DMA controller 60
functions in a programmed I/O mode in which the DMA
controller is functionally a slave to the CPU 38. In a second
mode, DMA controller 60 itself functions as a system bus
master, in which DMA controller 60 arbitrates for and
controls I/O bus 32. During this second mode, DMA con
troller 60 uses a first in, first out (FIFO) register circuit.
CACP circuit 62 functions as the arbiter for the DMA

controller, I/O device bus controllers and the CPU (if
accessing I/O devices). CACP circuit 62 receives arbitration
control signals from DMA controller 60, memory controller
58 as well as from I/O devices, and determines which
devices may control the I/O bus 32 and the length of time
during which the particular device will retain control of the
I/O bus.

Driver circuit 68 provides control information and address
information from memory controller 58 to systemmemories
24 and 26. Driver circuit 68 drives this information based
upon the number of single in-line memory modules

5,644,729
5

(SIMMs) which are used to construct system memories 24
and 26. Thus, driver circuit 68 varies the signal intensity of
the control and address information which is provided to
system memories 24 and 26 based upon the size of these
memories.

Buffer circuit 74 provides amplification and isolation
between processor complex base portion 18 and system
board 12. Buffer circuit 74 utilizes buffers which permit the
capture of boundary information between I/O bus 32 and bus
interface unit 64 in real time. Accordingly, if computer
system 10 experiences a failure condition, buffer circuit 74
may be accessed by a computer repair person to determine
the information which was present at connector 34 upon
failure of the system.
ROM 70 configures the system 10 upon power-up by

initially placing in system memory data from expansion
memory. Self test circuit 72, which is connected to a
plurality of locations within base portion 18, provides a
plurality of self test features. Self test circuit 72 accesses
buffer circuit 74 to determine if failure conditions exist, and
also tests the other major components of base portion 18
upon power-up of the system 10 to determine whether the
system is ready for operation.

Referring to FIG. 2, a schematic block diagram of the bus
interface unit 64 of the system of FIG. 1 is shown. Bus
interface unit 64 provides the basis for implementation of
the present invention by providing a bi-directional high
speed interface between system bus 76 and I/O bus 32.
Bus interface unit 64 includes system bus driver/receiver

circuit 102, I/O bus driver/receiver circuit 104 and control
logic circuits electrically connected therebetween. Driver/
receiver circuit 102 includes steering logic which directs
signals received from the system bus 76 to the appropriate
bus interface unit control logic circuit and receives signals
from the bus interface unit control logic circuits and directs
the signals to the system bus 76. I/O bus driver/receiver
circuit 104 includes steering logic which directs signals
received from the I/O bus 32 to the appropriate bus interface
unit control logic circuit and receives signals from the bus
interface unit control logic circuits and directs the signals to
the I/O bus 32.
The bus interface unit control logic circuits include sys

tem bus to I/O bus translation logic 106, I/O bus to system
bus translation logic 108, memory address compare logic
110, error recovery support logic 112, and cache snooping
logic 114. Programmed I/O circuit 116 is also electrically
coupled to system driver/receiver circuit 102.
The system bus to I/O bus translation logic 106 provides

the means required for the DMA controller 60 or the
memory controller 58 (on behalf of CPU 38) to act as a
system bus controller to access the I/O bus 32 and thereby
communicate with I/O devices 28 acting as slave devices on
the I/O bus. Translation logic 106 translates the control,
address and data lines of the system bus 76 into similar lines
on the I/O bus 32. Most control signals and all address
signals flow from the system bus 76 to the I/O bus 32 while
data information flow is bi-directional. The logic which acts
as system bus slave monitors the system bus 76 and detects
cycles which are intended for the I/O bus 32. Upon detection
of such a cycle, the system bus slave translates the timing of
signals on the system bus to I/O bus timing, initiates the
cycle on the I/O bus 32, waits for the cycle to be completed,
and terminates the cycle on the system bus 76.
The I/O bus to system bus translation logic 108 comprises

system bus address generation circuit 118, I/O bus expected
address generation circuit 120, system bus controller inter

10

15

25

30

35

45

50

55

65

6
face 122, FIFO buffer 124, I/O bus slave interface 126 and
bus to bus pacing control logic 128. System bus controller
interface 122 supports a high performance 32 bit (4 byte)
i486 burst protocol operating at 40 MHZ. Data transfers of
four, eight and sixteen bytes in burst mode and one to four
bytes in no-burst mode are provided. I/O bus slave interface
126 monitors the I/O bus 32 for operations destined for slave
devices on the system bus 76 and ignores those operations
destined for the I/O bus 32. All cycles picked up by the I/O
bus slave interface 126 are passed on to the FIFO buffer 124
and the system bus controller interface 122.
The I/O bus to system bus translation logic 108 provides

the means required for an I/O device 28 to act as an I/O bus
controller to access system bus 76 and thereby read or write
to systemmemories 24 and 26. In either of these operations,
an I/O device controls the I/O bus. The asynchronous I/O
bus interface 126, operating at the speed of the I/O device,
permits the bus interface unit 64 to act as a slave to the I/O
device controller on the I/O bus 32 to decode the memory
address and determine that the read or write cycle is destined
for system memories 24 or 26. Simultaneously, the system
bus controller interface 122 permits the bus interface unit 64
to act as a controller on the system bus 74. The memory
controller 58 (FIG. 2) acts as a slave to the bus interface unit
64, and either provides the interface 64 with data read from
system memory or writes data to systemmemory. The reads
and writes to system memory are accomplished through the
FIFO buffer 124, a block diagram of which is illustrated in
FIG. 3.

As shown in FIG. 3, FIFO buffer 124 is a dual ported,
asynchronous, bi-directional storage unit which provides
temporary storage of data information between the system
and I/O buses 76, 32. FIFO buffer 124 comprises four
sixteen-byte buffers 125A-125D and FFO control circuit
123. The four buffers 125A-125D buffer data to and from
I/O bus controllers and system bus slaves, thereby allowing
simultaneous operation of the I/O bus 32 and the system bus
76. The FIFO buffer 124 is physically organized as two
thirty-two byte buffers (125A/125B and 125C/125D). The
system bus controller interface 122 and the I/O bus slave
interface 126 each control one thirty-two byte buffer while
the other thirty-two byte buffer operates transparent to them.
Both of the thirty-two byte buffers are utilized for read and
write operations.

Each FIFO 124A, 125B, 125C, 125D has an address
register section either physically associated with the respec
tive FIFO, or logically associated therewith. As data is
transferred from the I/O bus 32 to FIFO 125A, the data will
be accumulated until the 16 byte bufferis filled with 16 bytes
of data, provided that the addresses are contiguous. If a
non-contiguous address is detected by the address action, the
FIFO 125A will transfer the stored data to FIFO 125C, and
at the same time FIFO 125B will start to receive this data
from the new non-contiguous address. FIFO 125B will
continue just as FIFO 125Adid untilitis filled with 16 bytes
of data, or another non-contiguous address is detected. FIFO
125B will then transfer the stored data to FIFO 125D, and
FIFO 125A again starts to store data; thus, it is possible to
store up to four 16 byte blocks of non-contiguous address
data

Further, by having two 32 byte buffers in parallel the
reading and writing of data can be toggled between them
thus giving an essentially continuous read or write function.

Moreover, by splitting the 32 byte buffers into two 16
bytes buffer sections which are coupled to other I/O bus 32
or system bus 26, the number of storage buffers can be

5,644,729
7

increased with minimal impact on the performance of the
FIFO as related to the capacitive loading on signals clocking
data in or out of the storage registers. This is accomplished
because for every two buffers added (in parallel) only half
the capacitive loading is added to the loading of clock
signals on each bus.

Additionally, by having two 16 byte buffers in series in
each leg, once one of the 16 byte buffers is filled with data,
such as in a read operation, the data can be transferred to the
other 16 byte buffers in series therewith, while the other
parallel legis accumulating data. Hence, there is no time lost
in either accumulating data, or transferring the data from one
bus to the other.
The logic for controlling the operation of the FIFO 124 is

supplied by FIFO Control Circuit 123.
Aparticular I/O device 28 may write to systemmemories

24 or 26 via I/O bus in bandwidths of either 1, 2 or 4 bytes
(i.e., 8, 16 or 32 bits). During writes to system memory by
an I/O device 28, the first transfer of write data is initially
stored in the FIFO buffer 125A or 125B. The I/O bus
expected address generation circuit 120 calculates the next
expected, or contiguous, address. The next contiguous
address is checked against the subsequent I/O address to
verify if the subsequent transfers are contiguous or not. If
contiguous, the second byte or bytes of write data is sent to
the same FIFO buffer 125A or 125B. The FIFO receives data
at asynchronous speeds of up to 40 megabytes per second
from the I/O bus 32.

This process continues until either buffer 125A or 125B is
full with a 16-byte packet of information or a non
contiguous address is detected. On the next clock cycle,
assuming that buffer 125A is full, the data in buffer 125A is
transferred to buffer 125C. Similarly, when buffer 125B is
full, all of its contents are transferred to buffer 125D in a
single clock cycle. The data stored in the buffers 125C and
125D is then written to system memory via an i486 burst
transfer at the system bus operational speed. The operation
of FIFO buffer 124 during a write to system memory by an
I/O device is thus continuous, alternating between buffers
125A and 125B, with each emptying into adjacent buffer
125C or 125D, respectively, while the other is receiving data
to be written to system memory. The FIFO buffer 124, then,
optimizes the speed of data writes to system memory by (i)
anticipating the address of the next likely byte of data to be
written into memory and (ii) accommodating the maximum
speed of write data from the FIFO buffer to system memory
via the system bus 76.

During reads of data from system memory to an I/O
device 28, FIFO buffer 124 operates differently. The system
bus address generation circuit 118 uses the initial read
address to generate subsequent read addresses of read data
and accumulate data in buffer 125C or 125D. Because the
system bus supports transfers in bandwidths of 16 bytes
wide, the system bus controller interface 122 may prefetch
16-byte packets of contiguous data and store it in buffers
125C or 125D without the I/O bus 32 actually providing
subsequent addresses, thus reducing latency between trans
fers. When buffer 125C is full of prefetched data, it transfers
its contents to buffer 125A in one clock cycle. Buffer 125D
similarly empties into buffer 125B when full. The data in
buffers 125A and 125B may then be read by a particular I/O
device controller in bandwidths of 1, 2 or 4 bytes. In this
way, system bus address generation circuit 118 functions as
an increment counter until instructed to by the I/O controller
device to stop prefetching data.
Bus to bus pacing control logic 128 creates a faster access

to systemmemory for high speedI/O devices. The bus to bus

10

5

20

25

30

35

40

45

50

55

65

8
pacing control logic 128 overrides the normal memory
controller arbitration scheme of system 10 by allowing an
I/O device in control of the I/O bus 32 uninterrupted access
to system memory during transfers of data by faster devices
which require multiple cycles, rather than alternating access
to the memory controller 58 between the I/O device and the
CPU. Thus, even if a local device such as the CPU has a
pending request for control of the memory bus during a
multiple cycle transmission by an I/O device, the bus to bus
pacing control logic 128 will grant the I/O device continued
control of the memory bus.
The programmed I/O circuit 116 is the portion of the bus

interface unit 64 which contains all of the registers which are
programmable within the businterface unit 64. The registers
have bits associated therewith to determine whether a par
ticular register is active or inactive. These registers define,
inter alia, the system memory and expansion memory
address ranges to which the bus interface unit 64 will
respond, the expansion memory addresses which are either
cacheable or noncacheable, the system memory or cache
address ranges, and whether or not parity or error checking
is supported by the bus interface unit. Accordingly, pro
grammed I/O circuit 116 identifies for the bus interface unit
64 the environment in which it resides, and the options to
which it is configured. The registers in programmed I/O
circuit 116 cannot be programmed directly over the I/O bus
32. Hence, in order to program the system 10, the user must
have access to an I/O device which may communicate over
the system bus to the programmed I/O circuit 116 at the CPU
level.
Memory address compare logic 110 determines if a

memory address corresponds to System memory or corre
sponds to expansion memory which is located on I/O device
28 coupled to the I/O bus 32. Because the system memory
as well as the expansion memory may be in non-contiguous
blocks of addresses, memory address compare logic 110
includes a plurality of comparators which are loaded with
boundary information from registers in the programmed I/O
circuit 116 to indicate which boundaries correspond to
which memory. After a particular memory address is com
pared with the boundary information by the memory address
compare logic, the bus interface unit is prepared to react
accordingly. For example, if an I/O device controlling the
I/O bus 32 is reading or writing to expansion memory, the
bus interface circuit need not pass that address to the
memory controller 58, thereby saving time and memory
bandwidth.

Error recovery support logic 112 permits the system 10 to
continue operations even if a data parity erroris detected. On
any read or write access by an I/O device 28 to system
memories 24 or 26, parity of the data is checked. Support
logic 112 interacts with a register in the programmed I/O
circuit 116 for capturing the address and the time of the
detected parity error. The contents of this register may then
be acted upon by appropriate system software. For example,
the CPU 38 may be programmed for a high level interrupt
to pull the address out of the register at any time a parity
error is detected. The CPU may then decide, based on the
system software instructions, whether to continue system
operations or merely terminate operation of the identified
source of the parity error.

Cache Snooping logic 114 permits the bus interface unit
64 to monitor the I/O bus 32 for any writes to expansion
memory by an I/O device taking place over the I/O bus 32.
The snooping logic first determines if the write to expansion
memory occurred in expansion memory which is cacheable
in SRAM 40. If it is not cacheable expansion memory, there

5,644,729
9

is no danger of corrupt data being cached. If, however, a
positive compare indicates that the write occurred in cache
able expansion memory, a cache invalidation cycle is initi
ated over the system bus 76. The CPU is thus instructed to
invalidate the corresponding address in SRAM 40. Cache
snooping logic 114 provides means to store the address of a
positive compare so that snooping of the I/O bus may
continue immediately after detection of the first positive
compare, thereby permitting continuous monitoring of the
I/O bus 32.

Bus pacing control logic 128 is used to improve the ability
of the I/O bus 32 to move data in and out of system
memories 24 and 26 by dynamically controlling access of an
I/O device to system memory. System performance is
improved by locking the access of an I/O device 28 in
control of the I/O bus 32 to system memory under certain
predetermined conditions.
The bus to bus pacing control logic 128, in conjunction

with FIFO buffer 124, is used to optimally match the data
transfer speed of I/O bus controllers to the data transfer
capability of the system memory. If, for example, a high
speed I/O controller can write to systemmemory faster than
the system memory can accept the write data, the buffered
write data will fill the FIFO buffers 125A-2125B completely
before the data can be written to systemmemory. If the same
high speed I/O controller can also read data from system
memory faster than system memory can provide the read
data, prefetched data will not be available in the FIFO
buffers 125C and 125D.In either case, the resultis increased
latency, and hence decreased performance, in data transfer
as seen by the I/O bus 32.

Typically, an I/O device controller will initiate a read or
write operation and provide a memory address over the I/O
bus 32 to the bus interface unit 64. Circuit 110 of the bus
interface unit compares this address to a range of addresses
programmed in circuit 116 to determine if the operation is
destined for expansion memory or system memory. If it is
determined that the operation is destined for expansion
memory, bus to bus pacing control logic 128 does nothing,
as there is no need to prioritize access to system memory
under this condition. If, however, it is determined that the
read or write operation is destined for system memories 24
or 26, and the predetermined conditions are met, the pacing
control logic 128 initiates a signal which grants an I/O
device 28 in control of the I/O bus 32 continued priority
access to system memory. This signal acts as an override to
the arbitration grant signal output by the memory controller
58 during normal arbitration procedures.
The predetermined conditions under which an I/O device

is granted priority access to system memory are as follows:
(1) aread request (prefetch) by an I/O device controlling the
I/O bus 32 is not aligned with a predefined 16-byte address
boundary in system memory, (2) an I/O device controlling
the I/O bus 32 immediately follows a write cycle with a read
cycle, (3) an I/O device controlling the I/O bus 32 completes
a data transfer cycle, (4) an I/O device controlling the I/O
bus 32 is reading or writing data in streaming mode (40
megabytes per second), or (5) more than two of the four
16-byte buffers in FIFO buffer 124 are already filled with
data to be written to system memory or less than two of the
four 16-byte buffers are yet to be filled with prefetched data
to be read from system memory.

In the preferred embodiment of the present invention, the
bus to bus pacing control logic 128 operates under three
modes. The first of these modes is the default mode, which
determines pacing of bus control for the first three condi

10

15

20

25

30

35

45

50

55

65

10
tions listed above. The second of these modes (option 1)
determines pacing for the fourth listed condition, and the
third of these modes (option 2) determines pacing for the
fifth listed condition. A user of the system may choose either
pacing mode (option 1 or option 2) in addition to the default
pacing mode which the system automatically provides. The
choice is made by programing the contents of a 3-bitregister
130 (not shown) in programmed I/O circuit 116. The default
pacing mode is defined by a 0-0-0 register content; option 1
is defined by a 0-0-1 register content; and option 2 is defined
by a 1-0-0 register content.
As explained above, the default pacing logic handles

pacing for the first three pacing conditions. Under the first
condition, an I/O device 28 requests a read of system
memories 24 or 26 which is not aligned with a particular
16-byte packet boundary, meaning that the read request is
for data addresses which begin somewhere within the
boundaries of a 16-byte packet. If the read data were aligned
with the boundaries of a particular 16-byte packet, the
system bus address generation circuit 118 would simply do
a standard 16-byte burst transfer of the data into either buffer
125C or 125D. However, if the read data is not packet
aligned, the data must be prefetched using multiple 1, 2, 3,
4 byte cycles. To insure that this data is prefetched in the
most efficient manner, access by the I/O device 28 to system
memory is locked while enough data is automatically
prefetched to arrive at a 16-byte boundary. This read data of
less than 16-bytes is then synchronized to the timing of the
I/O bus 32, and the I/O device controller begins to read the
data. In parallel with the I/O device controller reading data,
the system bus address generation circuit 118 will prefetch
the next contiguous 16-byte packet before releasing the lock
signal to system memory. Because this 16-byte packet
begins at a predefined boundary, a burst transfer is possible.
Thus, two transfers of data are performed without interrup
tion. Use of the lock signal 140 in FIG. 4 in this condition
insures the least amount of latency between when a device
on I/O bus 32 requests data and when bus interface unit 64
prerides data, and the most efficient use of page made system
memory.
Under the second condition, residual buffered write data

may exist in FIFO buffers 125A-125D when the I/O device
28 changes from a write transfer to a read request. Once the
I/O device bus controller changes from a write to a read,
pacing control logic 128 determines that an end of cycle has
occurred, that there is no more write data to be stored in the
FIFO buffer 124, and that read data is now being requested
from system memories 24 or 26. Because it is known that no
more contiguous write data is immediately forthcoming, the
buffered data in buffers 125A-125D is written to system
memory and the read request is prefetched from system
memory in one atomic operation.

Under the third condition, residual buffered data may also
exist in FIFO buffers 125A-125D when the I/O controller
device relinquishes control of the I/O bus 32. In this
instance, such residual data must be written to system
memory before releasing the system bus 76. If more than
one of the FIFO buffers 125A-125D include such residual
data, as soon as the I/O device controller relinquishes control
of the I/O bus 32, the pacing logic 128 will generate a signal
to the memory controller to indicate that data in FIFO buffer
124 exceeds one transfer in length (i.e., greater than 16
bytes) and needs to be written to system memories 24 or 26.
Use of the lock signal 140 in this condition insures the least
amount of latency between the I/O controller releasing
control of the I/O bus 32 and the bus interface unit 64
releasing control of system bus 76.

5,644.729
11

The default logic which responds to the first three con
ditions is realized by algorithms which are built into the
hardware of the bus interface unit 64. Typically, state
machines may be used to implement the required logic, as is
known in the art. The pacing logic which responds to the
fourth and fifth listed conditions is also realized by algo
rithms which are built into the bus interface unit hardware.
FIGS. 4 and 5 illustrate circuit diagrams used to implement
particular embodiments of the bus to bus pacing control
logic 128 for option 1 and option 2, respectively.

Referring to FIG. 4, the bus to bus pacing control logic for
implementing option 1 (relating to the fourth condition
described above) comprises a clocked S-R latch 132, AND
gates 134 and 136, and OR gate 138. At any time the latch
132 is set (S-input active), the latch outputs a LOCK signal
140. The LOCK signal 140 provides an I/O device 28 in
control of the I/O bus 32 continued access to systemmemory
when the I/O device 28 is reading or writing data to system
memories 24 and 26 in streaming mode. Streaming refers to
data transfer to the same address, which can be accom
plished more quickly than data transfer to different
addresses.
Upon detection of a streaming data write operation by the

logic of FIG. 4, and either of FIFO buffers 125C or 125D is
full with a 16-byte packet of buffered write data, the lock
signal is activated and a burst write sequence is initiated to
system memory over the system bus 76 and will remain
active until the I/O device 28 terminates the streaming
sequence or until there is no data remaining in the FIFO
buffers. Similarly, upon detection of a streaming data read
operation, the lock signal is activated and a burst read
sequence is initiated to system memory and will remain
active as long as there is room in the FIFO or until the I/O
device 28 terminates the streaming sequence. Bus control
logic 128 responsive to streaming reads or writes is defined
by programming a 0-0-1 register content in the 3-bit register
130. Hence, if the 3-bit register is programmed to 0-0-1,
AND gate 134 will decode the content of the register and
provide a HIGH option 1 enable line 142. Line 144 will also
be HIGH as long as the bus interface unit 64 detects that the
particular I/O device 28 in control of the I/O bus 32 is
writing or reading data in streaming mode. Because lines
142 and 144 are HIGH during this time, AND gate 136 will
set the latch 132 to output LOCK signal 140 any time output
146 of OR gate 138 is HIGH.
Output 146 of OR gate 138 is HIGH when either (i) the

I/O device 28 in control of the I/O bus 32 issues a streaming
data read request (read operations) or (i) either of 16-byte
buffers 125C or 125D in FIFO 124 is full (write operations).
In either of these instances, and with lines 142 and 144
HIGH as explained above, the latch 132 will override the
arbitration scheme of memory controller 58 by providing the
memory controller with a LOCK signal 140. Whenever the
I/O device 28 indicates that it is no longer transmitting read
or write data in streaming mode, line 148 goes HIGH,
thereby resetting the latch 132 and effectively disabling the
logic of FIG. 4.

Referring to FIG. 5, the bus to bus control logic for
implementing option 2 (relating to the fifth condition
described above) comprises clocked S-R latches 150 and
152, each of which is controlled independently by separate
logic paths for read and write cycles. At any time either of
these clocked latches 150, 152 are set, LOCK signal 140 is
enabled and output to the memory controller 58. The latches
are reset by activating the R-input, thereby disabling the
latches from outputting the LOCK signal.
Under the fifth condition listed above, either (i) data is

being written by an I/O controller 28 over I/O bus 32 and to

10

15

20

25

30

35

40

45

50

55

65

12
businterface unit 64 faster than it can be written over system
bus 76 to system memory, or (ii) data is being read from the
bus interface unit 64 by the I/O controller 28 faster than bus
interface unit can prefetch data from system memory. If data
is being written too fast by an I/O controller, residual data
begins building up in FIFO buffers 125A-125D. If more
than half of the FIFO buffer space contains such residual
data, a LOCK signal 140 is initiated by latch 152 to permit
atomic transfers to system memory. If data is being read too
quickly from bus interface unit 64 by I/O controller 28 over
I/O bus 32, FIFO buffers 125A or 125B will empty, meaning
that buffers 125C and 125D are depleted of available
prefetched contiguous data. A LOCK signal 140 is thus
output by latch 150 so that the bus interface unit may
prefetch data into buffers 125C and 125D. Accordingly, at
least half of the FIFO buffer 124 is maintained filled with
prefetched data.

Bus control logic responsive to the fifth condition is
defined by programming a 1-0-0 register content in the 3-bit
register 130. Hence, if the 3-bit register is programmed to
1-0-0, NOR gate 154 will decode the content of the register
and provide a HIGH option 2 enable line 156. The option 2
enable line 156 is used to enable the control logic responsive
to both data read operations (the upper half of logic of FIG.
5) and data write operations (the lower half of logic of FIG.
5).

During write operations, the output 156 of OR gate 158
will also be HIGH as long as at least two of the buffers
125A-125D are full. Typically, this means that either buffer
125A or 125B has been filled and transferred data to buffer
125C or 125D, respectively, and the other of buffers 125A or
125B is now being filled. In this case, data is in either buffer
125C or 125D, or both, and can immediately be written to
system memory. With lines 156 and 158 HIGH, then, AND
gate 162 will setlatch 152 which will then output the LOCK
signal 140 to the memory controller 58. The LOCK signal
140 will remain active until the R-input of latch 152 is
driven HIGH by the output of AND gate 164. AND gate 164
output goes HIGH if both buffer 125C and 125D are empty,
thereby indicating that there is no need to immediately write
data to system memory from these buffers.

During read operations, latch 150 will output the LOCK
signal to memory controller 58 when the latch 150 is set by
a HIGH output of AND gate 166. The output of AND gate
166 is driven high when (i) line 156 is HIGH due to option
2 being active, (ii) line 168 is HIGH due to the bus interface
unit 64 detecting a read from system memory, and (iii) line
170 is driven LOW by NAND gate 172 at any time either
buffer 125A or 125B is empty. ALOCK signal is initiated in
this case because, with either buffer 125A or 125B empty,
the contents of buffers 125C or 125D may be emptied
therein, leaving room in either buffer 125C or 125D for
prefetched contiguous data from system memory.
The LOCK signal in read operations remains active until

the R-input of latch 150 is activated by OR gate 174. OR
gate 174 is driven HIGH any time (i) the bus interface unit
64 detects that there is no read from system memory or (ii)
either of buffers 125C and 25D is ful and neither of buffers
125A and 125B is empty. In either of these two cases, the
LOCK signal is not necessary, and, accordingly, the latch
150 is reset. Access to system memories 24 and 26 is then
controlled under the normal arbitration scheme implemented
by the memory controller 58.

Accordingly, the preferred embodiment of an asynchro
nous bidirectional storage facility in a bus interface unit for
computers having dual bus architecture has been described.

5,644,729
13

With the foregoing description in mind, however, it is
understood that this description is made only by Way of
example, that the invention is not limited to the particular
embodiments described herein, and that various
rearrangements, modifications, and substitutions may be
implemented without departing from the true spirit of the
invention as hereinafter claimed.
We claim:
1. A computer system, comprising:
system memory;
a memory controller for controlling access to system
memory, said system memory and said memory con
troller connected by a memory bus;

a central processing unit coupled to said memory con
troller through a local bus, said central processing unit
being connected to read data from and write data to said
system memory over said local bus and said memory
bus by performing read and write operations;

a bus interface unit connected with said memory control
ler by a system bus;

at least one input/output (I/O) device connected to said
bus interface unit by an I/O bus for reading data from
and writing data to said system memory over said bus
interface unit;

said bus interface unit including a bidirectional data
storage unit to provide temporary storage of data being
transferred between said system bus and said I/O bus
during read and write operations performed by said at
least one I/O device, said bidirectional storage unit
comprising (i) a first pair of buffers connected in series
between said I/O bus and said system bus, and (ii) a
second pair of buffers connected in series between said
I/O bus and said system bus and in parallel with said
first pair of buffers, each of said buffers in each of said
pairs being used forbidirectional data transfer between
said system bus and said I/O bus wherein first and
second sets of data originating on either one of said
system bus or said I/O bus and destined for transfer in
one direction to the other one of said system bus or said
I/O bus are transferred to the bidirectional storage unit
so that (a) said first set of data is stored in one buffer of
one of the pairs of series-connected buffers, and (b) (1)
said stored first set of data contained in said one buffer
of one of the pairs of series-connected buffers is trans
ferred to the other bufferin said one of the pairs while,
simultaneously, (b) (2) said second set of data is
transferred into one buffer of the other series-connected
pair of buffers; wherein one of said first pair of buffers
and one of said second pair of buffers is connected to
said system bus, each of said system-bus connected
buffers capable of simultaneously transferring data
over said system bus.

2. The computer system of claim 1, wherein said at least
one I/O device comprises a plurality of I/O devices and
wherein data is transferred between each of said plurality of
I/O devices and said bidirectional storage unit over said I/O
bus at different bandwidths.

3. The computer system of claim 1 wherein each pair of
buffers stores thirty-two bytes of data.

10

15

20

25

30

35

45

50

55

14
4. The computer system of claim 3 wherein each of said

thirty-two byte pair of buffers includes two sixteen byte
buffers connected in series.

5. The computer system of claim 1 wherein said buffers
are configured to read and write over said I/O bus at a speed
at which said I/O device operates and over said system bus
at a given data burst speed.

6. Amethod of controlling data transfer between a system
memory connected to a system bus and at least one input/
output (I/O) device connected to an I/O bus in a computer
system, wherein said system bus is coupled to said I/O bus
by a bus interface unit comprising a first pair of buffers
connected in series between said I/O bus and said system
bus, and a second pair of buffers connected in series between
said I/O bus and said system bus and in parallel with said
first pair of buffers, the method comprising the steps of:

transferring first and second sets of data originating on
said I/O bus and destined for transfer in one direction
to said system bus across said bus interface unit by:
(a) temporarily storing said first set of datain one buffer

of one of the pairs of series-connected buffers;
simultaneously, (b) (1) transferring said stored first

set of data contained in said one buffer of one of
the pairs of series-connected buffers to the other
buffer in said one of the pairs; and (b) (2) trans
ferring said second set of data into one buffer of
the other series-connected pair of buffers;

(c) transferring said second set of data from said one
buffer of said other series-connected pair of buffers
to the other buffer of said other series-connected pair
of buffers; and

(d) (1) transferring said first set of data over said system
bus from said other buffer in said one of the pairs of
series-connected buffers while simultaneously (d)
(2) transferring said second set of data over said
system bus from said other buffer of said other
series-connected pair of buffers.

7. The method of claim 6, wherein said at least one I/O
device comprises a plurality of I/O devices and wherein data
is transferred between each of said I/O devices and said bus
interface unit over said I/O bus at different bandwidths.

8. The method of claim 6, wherein said buffers are
configured to read and write over said I/O bus at a speed at
which said selected I/O device operates and over said system
bus at a given data burst speed.

9. The method of claim 6, wherein said system bus
transfers read or write data between said bus interface unit
and said system bus in bandwidths of up to 16 bytes, and
wherein said I/O bus transfers read or write data between
said input/output device and said bus interface unit in
bandwidths of up to four bytes.

10. The method of claim 6, wherein data is passed through
said buffers in said bus interface unit in a first-in, first-out
procedure.

11. The method of claim 6, wherein each of said buffers
in each of said buffers pairs in said bus interface unit is used
for bidiredtional data transfer between said system bus and
said I/O bus.

