
USOO5878.256A

United States Patent (19) 11 Patent Number: 5,878.256
Bealkowski et al. (45) Date of Patent: Mar. 2, 1999

54 METHOD AND APPARATUS FOR 5,007,082 4/1991 Cummins 380/4
PROVIDING UPDATED FRMWARE INA 5,021,963 6/1991 Brown et al. 364/464.02
DATA PROCESSING SYSTEM 5,032,981 7/1991 Brilet al - 395/400

5,062,080 10/1991 Goldsmith 365/230.01
D. 5,129,080 7/1992 Smith 395/575

75 Inventors: SEly Pty th 5,210,854 5/1993 Beaverton et al. 395/500
p ray segun, s 5,226,006 7/1993 Wang et al. 365/189.01 Louis Bennie Capps, Jr., Boynton

Beach, all of Fla. OTHER PUBLICATIONS

73 Assignee: International Business Machine Intel, Memory Products 1991, pp. 6-1 -6-420.
Corp., Armonk, N.Y. Research Disclosure 31982, Undating Vital Products Data

Information in Flash Eprom Without Erasing.
21 Appl. No.: 777,844

Primary Examiner David L. Robertson
22 Filed: Oct. 16, 1991 Attorney, Agent, or Firm Jeffrey L. LaBau; Bruce D.
(51) Int. Cl. .. G06F 1200 Johse; Joseph P. Abate
52 U.S. Cl. 395/652; 395/712; 711/103 57 ABSTRACT
58 Field of Search 395/425, 500,

395/575, 712, 652; 364/900, 268; 340/301.1; A programmable firmware Store for a personal computer
System includes a plurality of nonvolatile alterable elec 711/103,154 tronic memories connected in a mutually paralleled circuit

56) References Cited arrangement. The memories are connected to a controller
that controls the memories to read firmware from and write

U.S. PATENT DOCUMENTS firmware into the electronic memories, and to write-protect
4,456.993 6/1984 Taniguchi et al. so at least one of the memories. Any memory can be write
4,607,332 8/1986 Goldberg 395/375 protected as initially Selected by a user or technician of the
4,648,031 3/1987 Jenner 395,575 System. The initial selection can be changed easily to
4,739,486 4/1988 Soderberg et al. ... 364/464 write-protect another of the memories. The firmware in one
4,758,988 7/1988 Kuo 365/189 memory includes code for checking the validity of firmware
4,802.117 1/1989 Chrosny et al. ... 371/11.1 Stored in another memory, and for Selecting one or the other
4,811,303 3/1989 Hirai 365/189 of the memories dependent upon a version code of the
4,823,252 4/1989 Horst et al. 371/8
4,839,628 6/1989 Davis et al. 340/311.1
4,893,279 1/1990 Rahman et al. 365/230.03
4,937,861 6/1990 Cummins 380/2
4,965,828 10/1990 Ergott, Jr. et al......................... 380/50 6 Claims, 18 Drawing Sheets

firmware. The controller also includes an update code for
updating the firmware in a Selected memory.

BSP
SGNAE

GENERATOR

ENABLE LOGC

5,878.256 Sheet 1 of 18 Mar. 2, 1999 U.S. Patent

5,878.256 Sheet 2 of 18 Mar. 2, 1999 U.S. Patent

X?HOM LEN VEHy TyOOT,

(~~~~

„ LINE/TO,

„HEAHES,

830 ||

U.S. Patent Mar 2, 1999 Sheet 4 of 18 5,878.256

: PROESSARD CE NPU f OUTPU
CONNECTOR BUS CONNECTORS SYSTEM POWER :

CONNECTOR WITH
232 SWITCH CONNECTIONS
N

CONTROBS (r

DATA Bis

ADDRESS Bus (

312
Y 318

314 : NIERRUPis? :

316
PROCESSOR CARD

NERRUPTS
254

280

244 282

274- :

H clock 250 240 276-1 :
CMOSRAMJ :

248
NVRAM J

308B

308A :

memory sy. I memory snyi
MEMORY SIMM F MEMORY SIMM 306

SIMM IDs --
340BT

301 Y

300 :
N

FIG. 3:

U.S. Patent Mar. 2, 1999 Sheet 5 of 18 5,878.256

OMA CONRO UNIT

FIRMWARE
SUBSYSTEM

MATH 38 COPROCESSOR)
CONTROL

N
CROSS OVER AND
MCROCHANNEL

PROCESSOR BUFFERS

O)
420-N ti

m 5 a.
a 9
-

R 5 O
1 Q

BUFFER MEMORY CONTROLLER BUFFER CONTROL

CACHE
MEMORY

326
(DATABUS A

PARY
GEN / CHK N

334 -
DATABUS i

PARTY
GEN 1 CHK ECC 1 PARY

N330

FIG. 4

U.S. Patent Mar. 2, 1999 Sheet 6 of 18 5,878.256

ADDRESS BUS DATA BUS

505 Y CONTROL BUS

5,878.256 Sheet 7 of 18 Mar. 2, 1999 U.S. Patent

AG+

U.S. Patent Mar. 2, 1999 Sheet 8 of 18 5,878.256

534

510
WAE SGNA
GENERATOR

FIG. 5C

5,878.256 Sheet 9 of 18 Mar. 2, 1999 U.S. Patent

dS8~~
209WHO XA2 AG+

U.S. Patent Mar. 2, 1999 Sheet 10 0f 18 5,878.256

700
THE SYSTEM IS POWERED-ON

THE COLD-START BANK IS THE ACTIVE BANK
N- AND POST BEGINS EXECUTING

704
Y--- PRELIMINARY INITIALIZATION IS PERFORMED

BANK CHECK AND SELECT

: 706 COD-START BANK CHECKS: - error indication
S THE A TERNATE-BANK VAD 2

714-)

: 708 COLD-STAR BANK CHECKS VERSION CODES:
'N S THE ALTERNATE-BANK NEWER

THAN THE COLD-STAR BANK ?

YES

710 | THE ALTERNATE BANK IS SELECTED AS ACTIVE

: 'N THE ACTIVE BANK IS COPIED INTO SHADOW-RAM

76 " - THE Post process Proceeds FIG. 7

U.S. Patent Mar. 2, 1999 Sheet 11 of 18 5,878.256

800
N- RUN FIRMWARE UPDATE UTILITY

UPDATE
- -----

802
Y- SELECT ALTERNATE-BANK AS ACTIVE

804
N- ENABLE ALTERNATE-BANK FOR UPDATE

806
N- PROGRAM ALTERNATE-BANK WITH NEW FIRMWARE

818
- : 808

N- ALTERNATE-BANK UPDATE SUCCESSFUL 2 ERROR INDICATION :

YES 820

810 THE SYSTEM
N WAS THIS A FUNCTIONAL ENHANCEMENT UPDATE 2 IS RESTARTED

812
N- POWER OFF THE SYSTEM

814
N TOGGLE JUMPER

818
N- POWER THE SYSTEM ON

FIG. 8

U.S. Patent Mar. 2, 1999 Sheet 12 of 18 5,878.256

BANK CHECK AND
SELECT CODE

VERSION

FIG. 9

U.S. Patent Mar. 2, 1999 Sheet 13 of 18 5,878.256

Entire Memory Must = OOH
Before Erasure

Use Ouick-Pulse
ProgrammingTM Algorithm
(Figure 5)
Wait for Vpp Ramp to Wpp

Initialize Addresses and
Pulse-Count

Data = 20H

Data as 20H

Duration of Erase Operation
(whiwha)

Addr = Byte to Verify;
Data as AOH; Stops Erase
Operation
twigll

Read Byte to Verify Erasure

Data = 00H, Resets the
Register for Read Operations

Wait for VPP Ramp to VPP

PRIOR ART

F.G. 1 OA

U.S. Patent Mar. 2, 1999 Sheet 14 of 18 5,878.256

Wait for VPP Ramp to VPP

Stott
Programming

PLSCNT at 0

WRITE Set-up
Progrom Cmd

initialize Pulse-Count

Data = 40H

Walid Address/Data

Duration of Program
Operation (tw-whi)
Data = COH; Stops Program
Operation

twHGL

Rod Dot from c. Read Byte to Verify
Programming

Compare Data Output to Data
Expected

Data = OOH, Resets the
Register for Read Operations

Wait for Vpp Ramp to VPP

PRIOR ART

FIG. OB

U.S. Patent Mar. 2, 1999 Sheet 15 of 18 5,878.256

ERASE WOTAGE
SWITCH

AoAs

PRIOR ART

FIG. 1 OC

5,878.256 Sheet 16 of 18 Mar. 2, 1999 U.S. Patent

Z HOMH

NM00-83Mod 99A

JLYHV YHOIRICI

XXXXXXX} ~ XXXXXXX ***

5,878.256 Sheet 17 of 18 Mar. 2, 1999 U.S. Patent

nada,

(3%) . a013, - (0x) away,

((x)) YIYO (3) 33 (XXXX?XXXX?XXX???????XXX

5,878.256 Sheet 18 of 18 Mar. 2, 1999 U.S. Patent

JLRIV RHOI YHdH

náda

2 HOIH

(*) 3A

| V(3) 33

5,878.256
1

METHOD AND APPARATUS FOR
PROVIDING UPDATED FRMWARE IN A

DATA PROCESSING SYSTEM

FIELD OF THE INVENTION

This invention relates to personal computer Systems and,
more particularly, to an arrangement for Storing System
firmware.

BACKGROUND OF THE INVENTION

Personal computer Systems in general, and IBM personal
computers in particular, have attained widespread use for
providing computer power to many Segments of today's
Society. A personal computer System can usually be defined
as a desk top, floor Standing, or portable computer that
includes a System unit having a System processor, a display
monitor, a keyboard, one or more diskette drives, a fixed
disk Storage, an optional pointing device Such as a “mouse,”
and an optional printer. These Systems are designed prima
rily to give independent computing power to a Single user or
Small group of users and are inexpensively priced for
purchase by individuals or businesses. Examples of Such
personal computer Systems are Sold under the trademarkS:
IBM's PERSONAL COMPUTER, PERSONAL COM
PUTER XT, PERSONAL COMPUTER AT and IBM's
PERSONAL SYSTEM/2 (hereinafter referred to as the IBM
PC, XT, AT, and PS/2, respectively) Models 25, 30, 50,55,
57, 60, 65, 70, 80, 90 and 95.

These Systems can be classified into two general families.
The first family, usually referred to as Family 1 Models, uses
a bus architecture exemplified by the IBM AT computer and
other “IBM compatible' machines. The second family,
referred to as Family 2 Models, uses IBM's MICRO CHAN
NEL bus architecture (MCA) exemplified by IBM's PS/2
Models 50 through 95. The bus architectures used in Family
1 and Family 2 are well known in the art.

Beginning with the earliest personal computer System of
the Family 1 models, the IBM PC, and through the Family
2 models the system processor was chosen from the Intel“86
Family” of processors (i.e., microprocessors). The Intel 86
Family of processors includes the 8088, 8086, 80286,
80386, and 80486 processors commercially available from
Intel Corporation. The architecture of the Intel 86 Family of
processors provides an upwardly compatible instruction Set
which assists in preserving Software investments from pre
vious processors in the 86 Family of processors. This
upward compatibility preserves the Software application
base and is one of the major factors which contributed to the
enormous success of the IBM PC and subsequent models.
The IBM PC and XT were the first models of the IBM

personal computer line and used the Intel 8088 processor.
The next significant change to IBM personal computer
systems was the IBM AT which used the Intel 80286
processor. The PS/2 line spanned several of the Intel pro
cessors. A system similar to the PC and XT was a version of
the PS/2 Model 30 which used an Intel 8086. The PS/2
Models 50 and 60 both used the Intel 80286 processor. The
Intel 80386 processor is used in the IBM PS/2 Model 80 and
certain versions of the IBM PS/2 Model 70. Other versions
of the IBM PS/2 Model 70, as well as the PS/2 Models 90
XP 486 and 95 XP 486, used the Intel 80486 processor. One
of the common points in all these Systems is the use of an
Intel 86 Family processor. A variety of commonly available
and well known Software operating Systems, Such as a DOS
or an OS/2 operating System, can operate on various mem
bers of the Intel Family of processors.

15

25

35

40

45

50

55

60

65

2
The processors in the Intel 86 Family support a variety of

“modes.” The basic mode in the Intel 86 Family of proces
SorS is a “Real” mode. Real mode is the only operating mode
of the 8088 and 8086 processors. Real mode supports a one
megabyte address Space. There are no protection mecha
nisms available in the 8088 and 8086 processors. The 80286
supports both a Real and a “Protected” mode of operation.
As the name “Protected” implies, Protected mode provides
a protected mode of operation. This protection prevents an
application from interfering with the operation of other
applications or the operating System. The 80286 provides
extended addressing capabilities over the 8088 and 8086 by
allowing up to Sixteen megabytes of memory to be
addressed directly. To maintain downward compatibility, the
80286 can be operated in Real mode to emulate the Real
mode of the 8088 or 8086. The 80386 and 80486 extend the
Intel 86 Family architecture even further by providing the
ability to address up to four gigabytes of physical memory.
The 80386 and 80486 also support a “Virtual 86” mode of
operation. The Virtual 86 mode Supports the operational
characteristics of the Real mode within the overall confines
of the Protected mode environment. This Virtual 86 mode is
useful for providing a very high level of compatibility with
applications which run under the DOS operating System but
must now operate within an overall Protected mode oper
ating System.

Beginning also with the earliest personal computer System
of the Family 1 models, such as the IBM Personal Computer,
it was recognized that a goal of achieving Software-hardware
compatibility would be of great importance. In order to
achieve this goal, an insulation layer of System resident
code, also referred to as “microcode,” was established
between the hardware and the software. This code provided
an operational interface between a user's application
program/operating System and the hardware device to
relieve the user of the concern about the characteristics of
hardware devices. Eventually, the code developed into a
basic input/output system (BIOS), for allowing new devices
to be added to the System, while insulating the application
program from the peculiarities of the hardware. The impor
tance of BIOS was immediately evident because it freed a
device driver from depending on Specific device hardware
characteristics while providing the device driver with an
intermediate interface to the device. Because BIOS was an
integral part of the System and controlled the movement of
data in and out of the System processor, it was resident on a
System planar of the System unit and was shipped to the user
in a read-only memory (ROM). For example, BIOS in the
original IBM Personal Computer occupied 8K (a kilobyte or
“K” refers to a quantity of 1024 bytes) of ROM resident on
the planar board. In addition to the ROM, the planar board
included the System processor, a main random access
memory (RAM), and other components which were fixed in
a substantially coplanar relationship on the board. The ROM
also contained a power-on self test (POST) program which
was used to test and initialize the computer System. The
accumulation of code resident in the computer system ROM
became known as the “system firmware,” or simply “firm
ware.” Thus, the firmware included a POST portion and a
BIOS portion.
AS new models of the personal computer family were

introduced, the firmware had to be updated and expanded to
Support new hardware devices Such as input/output (I/O)
devices. AS could be expected, the firmware started to
increase in memory size. For example, with the introduction
of the IBM PERSONAL COMPUTER AT, the firmware
grew to require 32K bytes of ROM. With the introduction of

5,878.256
3

the IBM PERSONAL SYSTEM/2 computer system with
MICRO CHANNEL architecture, a significantly new BIOS,
known as Advanced BIOS, or ABIOS, was developed.
However, to maintain software compatibility, BIOS from the
Family 1 models had to be included in the Family 2 models.
The Family 1 BIOS became known as compatibility BIOS
or CBIOS. Thus, BIOS evolved to include more than one
type of BIOS Such as the Compatibility Basic Input Output
System (CBIOS) and the Advanced Basic Input Output
System (ABIOS). Present architectural definitions for per
Sonal computer Systems allow for up to 128K of System
firmware address Space.

Today, with the continuing development of new
technology, personal computer Systems are becoming even
more Sophisticated and are being enhanced more frequently.
Because the technology is changing rapidly and new I/O
devices are being added to the personal computer Systems,
implementing modifications and effecting extensions to the
firmware have become significant problems in the develop
ment cycle of personal computer Systems. In addition,
maintenance of the firmware in computer Systems which are
installed at user locations is also a problem.

Sometimes, personal computer Systems are linked to form
a network (e.g., a Local Area Network) So that users can
eXchange information, Share I/O devices, and utilize a
particular direct access storage device (DASD) Such as a
particular fixed disk Storage. Typically, the LAN includes
“Clients” and a “Server.” A Client includes a computer
system having usually no DASD other than possibly a
diskette drive. A Server is a computer System which includes
a DASD for Supplying the storage for the Clients of the local
area network. Clients may require modifications, updates,
extensions or maintenance of the firmware.
AS a result of these problems and requirements, and of a

desire to modify the firmware as late as possible in the
development cycle, it has become necessary to provide the
ability to modify the firmware with a minimal disruption to
the operation of the personal computer System. Because
marketability and consumer acceptance of personal com
puter Systems appear to require the ability to add new I/O
devices and to minimize cost, it should be appreciated that
an easy modification of the firmware is a Substantial factor
in achieving Success in marketing personal computer Sys
tems. Personal computer Systems have traditionally Stored at
least a part of the system firmware in ROM. See, for
example, commonly owned U.S. patent application Ser. No.
07/398,865, entitled “Initial BIOS Load for a Personal
Computer System,” which is hereby incorporated by refer
ence. The major drawback of ROM is that once the ROM is
manufactured its contents cannot be altered. For example, if
the POST program code must be changed, the ROM must be
physically changed. The ROM has traditionally been sock
eted to allow for the ROM to be replaced. However, chang
ing the ROM in the field (i.e., at a customer location) is time
consuming and, thus, costly.

It is known to replace the ROM with an electrically
erasable and reprogrammable (i.e., alterable) nonvolatile
random access memory (e.g., Flash memory), and to store
POST and/or BIOS therein. See, for example, the publica
tion from Intel Corporation, entitled Memory Products 1991,
Intel Order No. 210830, ISBN 1-55512-117-9, and particu
larly Chapter 6 (Flash Memories, pgs. 6-1 through 6-420),
which chapter is hereby incorporated by reference. This
permits the firmware to be modified easily.

However, the present inventors believe that there exists a
need to ensure the integrity of System firmware efficiently
while permitting the System firmware to be modified easily.

15

25

35

40

45

50

55

60

65

4
SUMMARY OF THE INVENTION

A principal object of the present invention is ensuring the
integrity of System firmware efficiently while allowing the
firmware to be modified easily.
A further object of the present invention is modifying the

firmware in a personal computer System while ensuring that
Such System retains Sufficient firmware to remain operable.
The present invention has been developed for overcoming

the above-mentioned needs, requirements and problems. In
accordance with the invention, an apparatus for Storing
firmware includes: a plurality of nonvolatile alterable elec
tronic memory devices being connected in an electrically
mutually parallel circuit arrangement, and means for con
trolling the memory devices Such that firmware can be read
from or written to a Selected one of the memory devices, the
controlling means being electrically connected to the
memory devices. Each memory device can include the same
or a different version of the firmware. The redundant memo
ries of this invention permits ensuring firmware integrity by
write protecting one of the memory devices.

BRIEF DESCRIPTION OF THE DRAWINGS

Further and still other objects of the present invention will
become more readily apparent in light of the following
description taken in conjunction with the accompanying
drawing, in which:

FIG. 1A is a drawing of a typical personal computer
System;

FIG. 1B is a diagram of a typical local area network;
FIG. 2 is a block Schematic diagram of a planar board

which can be used in the computer system of FIG. 1A;
FIG.3 is a block schematic of an alternative planar board

which can be used in the computer system of FIG. 1A;
FIG. 4 is a block Schematic of a processor card which can

be used with the alternative planar board of FIG. 3;
FIG. 5A is a block Schematic of the apparatus according

to the present invention;
FIG. 5B is a more detailed block schematic diagram of the

memory devices and the control means of FIG. 5A;
FIG. 5C is a block diagram of a generator for generating

a Write Authority Enable (WAE) signal;
FIG. 6 is a block Schematic diagram of an apparatus for

generating a signal at the BSP input of an enable logic device
of the control means,

FIG. 7 is a flow diagram of the power-on Sequence as it
applies to the firmware Subsystem;

FIG. 8 is a flow diagram of a system firmware modifica
tion procedure;

FIG. 9 is a memory map for typical firmware which is
storable in a memory device of FIG. 5B;

FIG. 10A and FIG. 10B are flow diagrams for erasing and
programming Intel 28F010 Flash memories; FIG. 10C is a
block diagram of one Intel 28F010 Flash memory;

FIG. 11A, FIG. 11B, and FIG. 11C are diagrams of signal
waveforms, respectively, for reading, erasing and program
ming operations of one Intel 28F010 Flash memory.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

The following detailed description is of the best presently
contemplated mode for carrying out the present invention.
This description is not to be taken in a limiting Sense, but is
made for the purpose of illustrating the general principles of
the invention.

5,878.256
S

Referring now to the figures, and in particular to FIG. 1A,
there is shown a personal computer system 100 which
employs the present invention. The personal computer Sys
tem 100 comprises a system unit 102, output device or
monitor 104 (Such as a conventional Video display), input
devices Such as a keyboard 110, an optional mouse 112, and
an optional output device Such as a printer 114. Finally, the
System unit 102 may include one or more mass Storage
devices such as a diskette drive 108 and a hard disk drive
(hardfile) 106.

The system unit 102 responds to the input devices.
Optionally, the unit 102 and selected input and output
devices 106, 108, 110, 104 may be connected in a well
known manner with other system units 102B to form a local
area network (LAN) as shown in FIG. 1B. Typically, such
units (Clients) 102B include no drives 106, 108. Of course,
those skilled in the art are aware that other conventional I/O
devices can also be connected to the system units 102,102B
for interaction therewith.

In normal use, the personal computer system 100 is
designed to give independent computing power to a Small
group of users as a Server in a LAN or to a single user, and
is inexpensively priced for purchase by individuals or Small
businesses. In operation, a processor 202 (FIGS. 2 and 4)
functions under an operating system such as IBM's OS/2
operating System or a DOS operating System. The operating
system is loaded and stored within the system unit 102 in
any conventional manner. This type of operating System
utilizes a BIOS interface between the I/O devices and the
operating System. BIOS, which is a part of the firmware, is
divided into optional modules by function (see FIG. 9).
BIOS provides an interface between the hardware and the
operating System Software to enable a programmer or user to
program his machine without an in-depth operating knowl
edge of a particular device. For example, a BIOS diskette
module permits a programmer to program the diskette drive
without an in-depth knowledge of the diskette drive hard
ware. Thus, a number of diskette drives designed and
manufactured by different companies can be used within the
system 100. This not only lowers the cost of the system, but
also permits a user to choose from a number of diskette
drives. BIOS is more clearly defined in the IBM Personal
System/2 and Personal Computer BIOS Interface Technical
Reference 1988, which is incorporated by reference herein.

Unified Planar

Referring to FIG. 2, there is shown a block diagram of a
unified planar 200 of the system unit 102. The planar 200
includes a printed circuit board (PCB) 201 upon which are
mounted or connected a number of input/output bus con
nectors 232 having I/O slots, a processor 202 which is
connected by a high speed CPU local bus 210 under control
of a bus control unit 214 to a memory control unit 256 which
is further connected to a Volatile random access memory
(RAM) 264. Any appropriate processor 202 can be used
Such as an Intel 80386, Intel 80486 or the like.
The CPU local bus 210 (comprising address, data and

control components) provides for the connection of the
processor 202, an optional math coprocessor 204, an
optional cache controller 206, and an optional cache
memory 208. Also coupled onto the CPU local bus 210 is a
system buffer 212. The system buffer 212 is itself connected
to a slower speed (compared to the CPU local bus 210)
System buS 216 which comprises address, data and control
components. The system bus 216 extends between the
system buffer 212 and an I/O buffer 228. The system bus 216

15

25

35

40

45

50

55

60

65

6
is further connected to the bus control unit 214 and to a
direct memory access (DMA) control unit 220. The DMA
control unit 220 includes a central arbitration unit 224 and
a DMA controller 222. The I/O buffer 228 provides an
interface between the system bus 216 and an I/O bus 230.
Those skilled in the art will recognize that while the pre
ferred embodiment is implemented on the MICRO CHAN
NEL bus of an IBM PS/2 computer system, which is well
known in the art, alternative bus architectures could also be
used to employ the invention.

Connected to the I/O bus 230 is a plurality of I/O bus
connectors having slots 232 for receiving adapter cards (not
shown) which may be further connected to I/O devices or
memory (e.g., hardfile 106). Two I/O connectors 232 are
shown for convenience, but additional I/O connectors may
easily be added to Suit the needs of a particular System. An
arbitration control bus 226 couples the DMA controller 222
and the central arbitration unit 224 to the I/O connectors 232
and a diskette adapter 246. Also connected to the System bus
216 is a memory control unit 256 which includes a memory
controller 258, an address multiplexer 260, and a data buffer
262. The memory control unit 256 is further connected to a
main memory Such as a random acceSS memory as repre
sented by the RAM module 264. The memory controller 258
includes the logic for mapping addresses to and from the
processor 202 to and from particular areas of RAM 264.
While the system 100 is shown with a basic one megabyte
RAM module 264, it is understood that additional memory
can be interconnected as represented in FIG. 2 by the
optional memory modules 266, 268, 270.
A buffer 218 is coupled between the system bus 216 and

a planar I/O bus 234. The planar I/O bus 234 includes
address, data, and control components. Coupled along the
planar I/O bus 234 are a variety of I/O adapters and other
peripheral components Such as the display adapter 236
(which is used to drive the optional display 104), a clock
250, a nonvolatile RAM 248 (hereinafter referred to as
NVRAM), a serial adapter 240 (other common terms used
for “serial” are “asynchronous” and “RS232), a parallel
adapter 238, a plurality of timers 252, the diskette adapter
246, a keyboard/mouse controller 244, an interrupt control
ler 254, and a firmware subsystem 242 which is essential to
the present invention. According to the present invention,
the Subsystem 242 includes a plurality (e.g., two) of non
Volatile alterable electronic memory devices which are con
nected in an electrically mutually parallel circuit arrange
ment. Each memory device includes the POST and the BIOS
programs. POST includes a Bank Check and Select portion
of the invention. The firmware subsystem 242 and the
remaining essential elements of the invention will be
described later with respect to FIGS.5A, 5B, 5C, 6, 7, 8, 9,
10A, 10B, 10C, 11A, 11B and 11C.
The clock 250 is used for time of day calculations. The

NVRAM 248 is used to store system configuration data.
That is, the NVRAM 248 will contain values which describe
the present configuration of the system. The NVRAM 248
contains information which describes, for example, adapter
card initialization data, capacity of a fixed disk or a diskette,
the amount of memory, etc. Furthermore, these data are
stored in NVRAM 248 whenever a configuration program is
executed. This configuration program can be a conventional
Set configuration program provided on a System Reference
Diskette included with IBM PS/2 computer systems. The
Reference Diskette is Sometimes referred to as a diagnostic,
maintenance or a Service diskette. The purpose of the
configuration program is to Store values characterizing the
configuration of this system to NVRAM 248 which are

5,878.256
7

saved when power is removed from the system. The
NVRAM can be a low power CMOS memory with a battery
backup.

Connected to the keyboard/mouse controller 244 are a
port A278 and a port B 280. These ports are used to connect
the keyboard 110 and the mouse 112 to the personal com
puter system 100. Coupled to the serial adapter unit 240 is
a Serial connector 276. An optional device Such as a modem
(not shown) can be coupled to the System through this
connector 276. Coupled to the parallel adapter 238 is a
parallel connector 274 to which a device such as the printer
114 can be connected. Connected to the diskette adapter 246
is a diskette connector 282 used to attach one or more
diskette drives 108.

Planar Board

According to an alternative embodiment of the personal
computer system 100, the unified planar 200 is replaced by
a planar board 300 and a processor card 400 (FIGS. 3 and
4). The processor card 400 is removably mounted on and is
electrically connected to the planar board 300. Like element
numbers of FIG. 2 correspond to like elements in FIGS. 3
and 4. Referring now to FIG. 3, the planar board 300
comprises a printed circuit board (PCB) 301 upon which are
mounted (e.g., Surface mounted) various components that
are interconnected by wiring or circuits in the PCB. Such
components include a Suitable commercially available elec
trical connector 302 into which an edge 416 of the processor
card 400 is plugged for removably mounting and electrically
connecting the processor card 400 to the planar board 300.
A plurality of single in-line memory module (SIMM) con
nectors 306 is also mounted on PCB 301 for connecting to
memory banks 308A, 308B forming the system main
memory or RAM. One or more I/O bus or expansion
connectors 232 are also mounted on PCB 301 for connection
to different expansion adapters and options that might be
added or incorporated into the personal computer System
100. For example, the fixed disk drive 106 may be connected
to an adapter card (not shown) having a disk controller
which is connected to a connector 232. Preferably, each
connector 232 is a commercially available connector of the
type conforming to the above-mentioned MICRO CHAN
NEL architecture.

Also mounted on planar board 300 are an interrupt
controller 254 and a keyboard and mouse controller 244,
connected to keyboard and mouse connectors 278, 280, a
diskette controller 246 connected to a diskette connector
282, and serial and parallel adapters 240, 283 connected to
serial and parallel connectors 276, 274, which allow the
various I/O devices to be connected into the system. A
system power connector 304 is mounted on PCB 301 for
connection to a power unit (not shown) that Supplies the
necessary power for the System. A nonvolatile memory
(NVRAM) 248 and a time-of-day clock 250 are also
mounted on PCB 301. The PCB 301 also has mounted
thereon various oscillators (not shown) to provide timing
signals, and buffers 342, 344 (not all shown) to isolate
Sections of the circuitry in a manner well known.

The wiring of PCB 301 interconnects the various com
ponents as shown in the drawing and is grouped into three
groupings, a memory bus 310 (including lines 324–338), a
channel bus 312 (including address bus 322, data bus 320
and control bus 318), and miscellaneous signal lines includ
ing interrupt lines 314, 316, all of which are connected to
counterpart wiring on PCB 401 through the connectors 302,
416. Tapped off the bus 312 is a planar function bus 319.

5

15

25

35

40

45

50

55

60

65

8
Processor Card

Referring to FIG. 4, there is shown the processor card 400
for being removably mounting on the planar board 300. The
processor card 400 comprises a printed circuit board (PCB)
401 having mounted (e.g., Surface mounted) thereon a
plurality of commercially available components including a
processor 202, an optional math coprocessor 204, an
optional cache controller 206, an optional cache memory
208, a direct memory access (DMA) control unit 220, a bus
control unit 214, a memory control unit 256, a firmware
Subsystem 242 of the present invention, and parity checking
units 402, 404. The processor 202 preferably is a high
performance type, Such as an Intel 80486, having thirty-two
bit data paths and providing thirty-two bit addressing capa
bility. Of course, Intel 80386DX, 80386 and the like pro
ceSSorS can be used. The remaining components are Selected
in conventional fashion for their compatibility with Such
processor. A plurality of buffers 406, 408, 410, 412, 414 is
connected as shown. The buffers provide selective isolation
or connection between the circuits allowing different por
tions to be used concurrently, for example, to move data
between the processor and cache while other data is being
transferred between an I/O unit and the main memory 308A,
308B. All of the above components are electrically con
nected to each other as appropriate by printed wiring circuits
in PCB 401 which terminate at the edge connector 416. The
edge connector 416 is pluggable into edge connector 302 on
the planar board 300 shown in FIG. 3 so that the planar
board 300 and the processor card 400 are electrically and
mechanically interconnectable.
The wiring circuits of PCB 401 include a local bus 418

including data, address and control lines 420, 422, 424,
respectively, which interconnect the processor 202 with an
optional math coprocessor 204, an optional cache controller
206 and an optional cache memory 208, as shown in FIG. 4.
The remaining circuit lines generally include interrupt lines
316, channel bus lines 312 and memory bus lines 310. The
channel bus lines 312 include control, data and address bus
lines 318, 320, 322, respectively. Memory bus lines 310
include multiplexed memory address lines 324, 332, row
address strobe (RAS) lines 328, 336 for memory banks
308A, 308B, column address strobe (CAS) line 338, data
bus A and Blines 326 and 334, and a line 330 for use in error
checking via parity check or ECC checking. For simplicity,
certain miscellaneous lines, Such as reset, grounds, power
on, etc. have been omitted from FIGS. 2, 3 and 4.

During normal operation of a personal computer System
100 having a board 300 and a card 400, the card 400 is
electrically and mechanically connected to board 300 and
typically lies in a plane oriented Substantially perpendicu
larly to the board 400.

Firmware Subsystem
The system firmware includes the Power-On Self Test

program (POST) and the Basic Input Output System pro
gram (BIOS). POST is the set of instructions which execute
when the system is first powered-on. The execution of POST
is critical to the initialization of the personal computer
system. Without POST, the system would be unable to load
an operating System or other programs (e.g., an update utility
program). BIOS is the set of instructions which facilitates
the transfer of data and control instructions between the
processor and I/O devices.

Referring now to FIG. 5A, there is shown a block diagram
of the firmware Subsystem 242 according to the present
invention. Two memory banks 502, 504 are shown managed

5,878.256
9

by a control apparatus 505 which controls the reading and
writing of the firmware from and into the memory banks
502, 504. The banks 502, 504 are connected in an electri
cally mutually parallel circuit arrangement, and are also
connected to the control apparatus 505, all as shown in FIG.
5A. The control apparatus always write protects a Selected
one of the banks 502, 504. Preferably, complete firmware
(i.e., POST and BIOS necessary for operation of the com
puter system) is stored within each of the banks 502, 504.
POST includes a portion of code according to the invention.
Such portion performs a Bank Check and Select routine as
shown in FIG. 7, steps 706-714. Bank Update code, which
is part of a firmware update utility program (FIG. 8), is
resident initially, e.g., on a diskette. Such Update code
causes the reprogramming of a Selected memory bank 502,
504 with updated firmware. The control apparatus, thus,
operates responsive to Signals originated at least by the Bank
Check and Select code and/or the Bank Update code.

FIG. 5B shows the firmware subsystem 242 in more
detail. The Subsystem 242 includes a plurality (e.g., two) of
in-circuit reprogrammable (i.e., alterable) nonvolatile
memory devices, bank O 502 and bank 1504. The memory
devices or banks 502, 504 are of the semiconductor type
such as the Intel 28F010 Flash Memory device described in
Intel Memory Products 1991, pages 6-55 through 6-80
which is incorporated herein by reference. The Intel 28F010
Flash Memory provides 128 kilobytes of data storage capac
ity. The apparatus 505 of FIG. 5A includes enable logic
device 500 having input lines 508–520 and output lines
522-530, voltage generator 507, 506 and various generators
of the signals (WRSEL, WAE, WRGATE, ALTBANK,
FSEL, SWR, BSP) on the input lines 508–520. The input
Signals originate in the Bank Check and Select code, the
Bank Update code, the generator 600 and/or in various
hardware, all as is well understood by those skilled in view
of the instant specification. The device 500 is, for example,
a logic device “PAL16R8D' commercially manufactured by
Advanced Micro Devices, Inc. (AMD). Either bank 0502 or
bank 1504 may be active at any given time. The enable logic
of the device 500 determines which bank is to be active
(active bank). A switch 506 is included to control a DC to
DC converter 507 (converting +5 V to +12 V) which
provides a programming Voltage Vpp on a line 532 to the
banks 502, 504. The Switch 506 is, for example, a transistor
device "2N3904” commercially manufactured by Motorola,
Inc. The DC to DC converter 507 is, for example, a device
“NMFO512S” commercially manufactured by International
Power Sources, Inc. The memory banks 502, 504 are con
nected to address and data lines (FIGS. 2 and 4) and the lines
508-518 are connected to the control lines in a manner well
within the skill of the art. The parallel banks 502, 504 can
be permanently affixed to the PCB 201, 401 board because
they can be reprogrammed in-place, unlike a ROM of
previous computer Systems which was Socketed.

It should be noted that a subsystem which employed only
a single memory bank of Intel 28F010 Flash Memory would
be vulnerable to incapacitation. Because of its construction,
a Flash memory device must first be completely erased
before it can be reprogrammed. If there is a power loSS to the
computer System during the time period in which the Flash
memory is being erased or before it can be completely
reprogrammed, then the critical initialization program
(POST) is likely to be lost. Without POST, the system could
not "boot' and, thus, could not load and run an update
program which would update the firmware in the Single
memory bank.

Continuing to refer to FIG. 5B, a more detailed descrip
tion of the enable logic device 500 is presented. The enable

15

25

35

40

45

50

55

60

65

10
logic device 500 has as an input a Write Select bit or signal
(WRSEL) which is a bit obtained from an I/O control port
used to enable writes to the selected bank 502 or 504. The
control port used to provide the WRSEL signal can be a
standard I/O port resident in the Memory Control Unit 256
of FIGS. 2 and 4. A control port is accessed through an
“OUT” instruction of the Intel 86 Family of processors
which is well known in the art. When WRSEL on line 508
is a logical Zero, writes are enabled. This WRSEL bit is
under direct program control. Direct program control is
understood to be a control by the Bank Update code of the
utility program (see FIG. 8).
The Write Authority Enable (WAE) bit (signal) on line

510 is a security feature which allows bank reprogramming
to be prevented. For example, the control apparatus 505 may
include a signal generator 534 (FIG.5C). The generator 534
consists of, e.g., a three position key Switch and a Source of
suitable potential (not shown). One position of this switch is
the OFF or disabled position. The second position of the
Switch is ON, but no maintenance authority. The third
position is ON with maintenance authority. Maintenance
authority can be considered to be equivalent to a "service
mode” of operation. That is, a mode in which only a
qualified computer Service technician is allowed to perform
certain tasks. The signal WAE would only be enabled (e.g.,
logical 1) by the Switch when the Switch is in the ON with
maintenance authority position. This would ensure that the
casual user could not alter the contents of the firmware banks
502, 504. Of course, the WAE bit on the line 510 could be
controlled in a number of ways and the Switch is only one
such example. The WAE signal could be controlled by other
logic in the computer System which could include a pro
grammable I/O port. In systems which do not wish to
support this added level of security, this WAE signal is
always in the enabled State.

Continuing now with discussion of the enable logic
device 500, the Write Gate (WRGATE) bit on the line 512
is a hardware generated timing Signal (active low) received
from the Memory Control Unit 256 of FIGS. 2 and 4.
WRGATE controls the pulse width of the Write Enable 528
(WE) signal on the line 528 to the firmware banks 502,504
as set forth in the Intel 28F010 Flash device specification
previously incorporated by reference. The Alternate-Bank
bit (ALTBANK) on the line 514 selects the Alternate-Bank
for reads or writes (logical 0=Alternate-Bank). The
Alternate-Bank is the bank which is not initially selected by
a BSP signal on the line 520. ALTBANK signal on line 514
is received from the Memory Control Unit 256 of FIGS. 2
and 4 and is under direct program control. The Bank Select
and Protect (BSP) signal, described in more detail with
reference to FIG. 6, determines which bank is to be active at
power-on (logical 0=bank 0 502). The Firmware Select
(FSEL) signal is active when any firmware address has been
decoded during read or write cycles. FSEL 516 is received
from hardware such as the Memory Control Unit 256 of
FIGS. 2 and 4 and is active low. System Write/Read 518
(SWR) Signal, a hardware generated timing Signal, is high
for a system write cycle, low for a read cycle. SWR 518 is
received from hardware such as Memory Control Unit 256
of FIGS. 2 and 4. The signals WRGATE 512, FSEL516, and
SWR 518 are hardware generated timing and control signals
which are well understood in the art.
A Programming Voltage Enable (PVE) output signal on

the line 530 of the enable logic device 500 controls the
operation of the switch 506. When PVE 530 enables the
Switch 506, the DC to DC converter 507 is enabled and
provides a +12 V programming Voltage Vpp on the line 532

5,878.256
11

to the banks 502,504. The converter 507 is connected to a
source of potential (+5 V) readily available within the unit
102. When PVE 530 disables the Switch 506, successful
writes to the banks 502,504 cannot occur. The Intel 28F010
Flash memory device requires +12 V to enable the repro
grammable or alterable feature of the device.
The Chip Enable signals (CE1, CEO), the Output Enable

signal (OE), and the Write Enable signal (WE) are input
signals to the Intel 28F010 Flash memory device as known
in the art and described in the above referenced Intel 28F010
Specification previously incorporated herein. Chip Enable O
524 (CEO) and Chip Enable 1522 (CE1) determine which
bank 502, 504 is active. The respective Chip Enable signal
activates the respective device's control logic, input buffers,
decoders and Sense amplifiers which are included with the
elements shown in FIG. 10C. Output Enable 526 (OE) is an
input signal common to both the bank 0502 and the bank 1
504 which enables the reading of the active bank. Output
Enable (OE) activates the device's data output signals
during a read cycle. Write Enable 528 (WE) is an input
signal common to both the bank O 502 and the bank 1 504
which determines if and when a data write will be accepted.
Write Enable controls writes to the control register and the
array of the active bank. Both of these signals (OE and WE)
are gated internal to the Flash memories by the CEO and CE1
Signals. Thus, reads and writes can occur with respect to
only the active bank.

The enable logic device 500 is defined by a set of
equations hereinafter Set forth for use in the programmable
logic device or other physical implementation. In the nota
tion which follows, the underscore “ ” is purely notational
for the reader and means that the Signal is active low. The
notation used on the right-hand side of the equation is: the
“” means logical NOT, the “&” means logical AND, the “#”
means logical OR. The “” when used on the left-hand side
of the equation sign is used to mean active low. That is, when
the right-hand Side evaluates to be active, the Signal on the
left-hand side is to be active in the low state. The five
equations for these signals are:

PVE =WRSEL & WAE

CEO =FSEL & BSP & ALTBANK # FSEL & BSP &
ALTBANK

CE1 =FSEL & CEO

OE =FSEL & SWR

WE =FSEL & SWR & ALTBANK & WRSEL & WAE
& WRGATE

Although the above five equations completely describe
the operation of the device 500, several example calculations
may be instructive:

Example #1, a read operation directed to the power-on or
(base bank):

With:
SWR=0, WRSEL=1, WAE=1, FSEL=1, BSP=0,
ALTBANK=1

Then:
PVE=1, CEO=1, CE1 =1, OE=1, WE=1

Then:
FSEL=0 to start the read operation.
Since SWR=0, a read will occur.

Then:

PVE=1, CE1 =1, WE=1, CEO=0, OE=0

5

15

25

35

40

45

50

55

60

65

12
Data will then become valid until FSEL goes to 1.

Example #2, a write operation directed to the Alternate
Bank:

First:
SWR=0, BSP=0, WRSEL=1, WAE=1, FSEL=1,
ALTBANK=0

Then:
PVE=1, CEO=1, CE1 =1, OE=1, WE=1

Then:
WAE=0, WRSEL=0, Then: PVE=0
At this point, the System waits a Specified period of

time (delay).
Then:

The processor 202 initiates a write cycle of the desired
data.

Then:
WRGATE=0, SWR=1, FSEL=0

Then:
CEO=1, WE=0, PVE=1, CE1 =0, OE=1
At this point, the data is written until WRGATE goes to

1.
See FIGS. 11A, 11B, and 11C for graphs of waveforms for

various signals used for reading from and writing to a Flash
memory device 502, 504.

Referring again to FIG. 5B, the banks 502, 504 are not
required to be physically Separate parts. A part can be built
which represents the logical functions of the two banks 502,
504 while being packaged as a single device. The parts can
be repackaged for purposes which can include reduced cost
and reduced board Space.

Turning now to FIG. 6, there is shown a block schematic
diagram of an apparatus (BSP Signal Generator) 600 for
generating the Base Bank Select and Protect (BSP) signal.
The generator 600 includes a jumper block 602 containing
three electrically conductive pins 606, 608, and 610 or
contact points for the attachment of a cold-Start bank Select
jumper 604. The jumper 604 is used to connect electrically
either pins 606 and 608 or pins 608 and 610. Pin 606 is a
no-connect pin. The pin 608 is connected directly to the BSP
output line or pin 520. The pin 610 is connected to electrical
ground. When the jumper 604 connects pins 606 and 608,
BSP 520 is pulled up to a logically high level representing
the “set' or “logical 1” state. When jumper 604 connects
pins 608 and 610, BSP 520 is pulled down to ground
potential representing the “clear” or “logical 0” state. Thus,
jumper 604 determines the initial state of the BSP520 signal
as either a logical “1” or a logical “0”. Block 602 is any
suitable insulator while the jumper 604 is any suitable
electrical conductor.

Description of Operation
It is advantageous to discuss the operation of the com

puter system 100 while focusing on the operation of the
firmware subsystem 242. Four cases will be discussed.

In a first case (#1), the computer system 100 includes two
firmware memory banks 502, 504 each containing an iden
tical complete program code image (i.e., identical firmware).
This is a typical case at the time of computer System
manufacture. In addition, the cold-Start bank Select jumper
604 is assumed to be in a position (shown in FIG. 6) which
selects the bank 502 of the firmware subsystem 242. Refer
ring now to the flowchart of FIG. 7 and again to FIG. 5B, the
system 100 is powered-on, step 700. Only actions relevant
to the operation of the firmware subsystem 242 need be
discussed. Coding the relevant steps set forth in FIGS. 7, 8,
10A and 10B, and generating electrical signals (e.g.,

5,878.256
13

WRSEL 508, ALTBANK 514) responsive to such code are
well within the skill of the art. The processor 202 begins
fetching the POST code from a predetermined address in the
bank 502, step 702. Because the firmware is mapped into
this predetermined address space and because the bank 502
is selected to be active at power-on by the jumper 604, the
processor 202 obtains the program code from the bank 502.
The POST portion of the code in the bank 502 performs

Some fundamental test and initialization activities Such as
checking the processor Self-test Status, Step 704. The type
and Scope of these early tests are matters of well-known
design choice. However, the step 704 also includes initial
izing a small section (64K) of system RAM 264 and an
additional section (128K) of system RAM known as Shadow
Memory (Shadow RAM). POST then copies a program code
routine (Bank Check and Select code shown in FIGS. 7 and
9) which is a portion of POST into the 64K section. This
code portion includes code to perform each of the Steps
706-714. At this point, the Bank Check and Select code
which is in the 64Ksection of system RAM then checks the
bank 504 firmware for validity, step 706. The validity check
706 on the bank 504 can be a checksum procedure which
must result in a predetermined value. For example, an
eight-bit running Sum of every byte in the firmware image
can be computed and compared to Zero, and if found to be
Zero the firmware image would be considered valid. Other
forms of validity checks can include a cyclic redundancy
check (CRC). The type of validity check or test, if one is
used at all is a matter of well-known design choice. If bank
504 firmware is not valid, then an error is indicated to the
user, step 714, and the system proceeds to step 712 where the
firmware (POST and BIOS) image of the firmware stored
within the presently active firmware bank 502 is copied into
Shadow-RAM, step 712. Because accessing RAM is nor
mally much faster than accessing the firmware Subsystem, a
Significant improvement in the processing Speed of the
computer system is achieved. Use of Shadow-RAM is for
performance reasons; POST and BIOS can be run exclu
sively from the Flash memory device 502 without any
transfer of the image to Shadow-RAM. The transfer may be
omitted to allow for alternate uses of the 128K of Shadow
RAM with the knowledge that a performance decrease in the
operation of POST and BIOS is likely to occur.

Returning to FIG. 7, when the bank 504 is checked (in
step 706) and if the bank 504 is determined to be valid, then
the Bank Check and Select code checks (in step 708) the
version code present in the bank 504 against the version
code present in the bank 502. This version checking can be
of, for example, a version number, a Sequence number, or a
date value. The means to track versions is a matter of
well-known design choice. A convenient version code is the
date included at a fixed location near the end of an IBM
personal computer firmware image (FIG.9). If the Alternate
Bank (in this case bank 504) code is not newer than the
cold-start bank code (in this case bank 502), then the system
proceeds to step 712. If the code in the Alternate-Bank is
newer than the code in the cold-Start bank, then the
Alternate-Bank is selected as active (step 710) which is done
through manipulating the ALTBANK bit previously
described. Because, in this example, the bank 504 has the
same date as the bank 502, the Bank Check and Select code
ignores the bank 504 and continues to step 712 where the
code of the active bank 502 is copied into Shadow-RAM
(i.e., the 128K of system RAM initialized in step 704). After
the firmware image has been copied into Shadow-RAM, the
Bank Check and Select code in the 64K of system RAM
transferS control to the image now resident in Shadow

15

25

35

40

45

50

55

60

65

14
RAM. Thus, POST is allowed to proceed with system test
and initialization, step 716. POST activities performed in
Step 716 are conventional and include testing and initializing
the diskette adapter 246 of FIGS. 2 and 3 and performing a
bootstrap load of the operating System, for example.

In a second case (#2), it is desired to modify (e.g., update)
the firmware stored within the bank 504. This update can
include fixes to correct errors in the original firmware. The
firmware update can be distributed on media Such as dis
kettes. A firmware update utility program must also be
included with the new firmware image. A Suitable update
utility program to perform the relevant steps of FIG. 8 can
be coded easily by those skilled in View of the erasing and
programming algorithms shown in FIG. 10A and FIG. 10B
and the waveforms shown in FIGS. 11A, 11B and 11C. Both
the updated firmware image and the utility program could be
part of a Reference Diskette for the system. Referring now
to FIG. 8, the computer system 100 must be “booted” and
the update utility must be executed, step 800. Before addi
tional StepS are taken, it is preferred that the update utility
reads the updated firmware code into the system RAM 264.
ASSuming that the jumper 604 is in the position that Selects
the bank 502 as the cold-start bank, the update utility
program selects the Alternate-Bank 504 as active, step 802,
by manipulating the ALTBANK signal. Recall that the
Alternate-Bank 504 is the only bank which can receive an
update. The update utility then enables the Alternate-Bank
for reprogramming by manipulating the WRSEL 508 signal,
step 804. The update utility program erases the old firmware
code from and writes the new firmware image into the
Alternate-Bank 504 (step 806) in accordance with the algo
rithms of FIGS. 10A and 10B. The status of the update
procedure is checked to determine if the update procedure
was successful, step 808. If the update procedure was
Successful, then the type of update is checked to determine
if the update included a functional enhancement, step 810.
For example, even version codes indicate a maintenance
release and odd version codes indicate a functional enhance
ment. If the update procedure was not Successful, then an
error indication is given, Step 818, and the user can either try
the procedure again or call for Service. If the update was a
functional enhancement, then the System must be powered
off, step 812. If the update procedure was not a functional
enhancement (e.g., just a maintenance release), then the
system is restarted electronically, step 820. The restart, step
820, is done to activate the new code as described in FIG. 7.
After a functional enhancement, the System is powered-off,
step 812, and the jumper 604 must be toggled to its alternate
position, Step 814. Likely, a functional enhancement to the
firmware is done in conjunction with a hardware change or
upgrade. Thus, the cover of the system unit 102 will need to
be removed to access the jumper 604 and to perform any
required hardware changes, updates, or enhancements. Note
that the user can always elect to toggle the jumper 604 after
any type of update. This is for the user who desires to have
the latest level offirmware in the cold-start bank. The system
is then powered back on, step 816.
ASSuming that we just applied a maintenance release and

not a functional enhancement, reinitializing the System
begins the same way as previously described with respect to
FIG. 7. That is, the jumper 604 has not yet been toggled. The
processor begins fetching program code with the bank 502
as active. When the bank 502 firmware checks the bank 504
firmware, it finds the bank 504 firmware to be valid and of
a newer version than the bank 502 firmware. At this point,
program control is transferred from the bank 502 to the bank
504. The bank 504, now in control, tests and initializes the

5,878.256
15

computer system 100. Thus, the computer system is now
operating with the updated and corrected firmware image.
The functional enhancement case (#3) is described next.

The next case #3 includes firmware updates which contain
functional enhancements. For example, assume that a new
Video attachment feature is available. For cost or perfor
mance reasons, it may be advantageous to update an existing
computer System with this new Video attachment feature.
However, the original firmware does not Support this new
Video feature. So, a firmware update is required. The pro
cedure is to obtain the updated firmware code and perform
the update procedure on the computer System before any
hardware changes are made. Once the firmware update is in
place, the System can be opened, the old video feature (e.g.,
an old adapter card) removed, and the new video feature
installed. Now the System can recognize and Support this
new video attachment.

There is a potential problem with the update procedure #3
just described. If any Subsequent update procedure fails, for
example, if there is a power loSS during the update
procedure, then the bank 504 will not contain valid firmware
when the power is restored. However, it was the bank 504
which contained the firmware capable of Supporting the new
Video attachment. Thus, when power is restored the System
will be inoperable because the bank 502 does not recognize
the new video attachment. The update procedure #3 for
functional updates needs to be enhanced. One additional
Step must be added. In case #4, the firmware is updated and
the System is opened and the new video feature installed as
in case #3. However, before the system is closed, the jumper
604 is moved to the alternate position. Thus, the updated
firmware code in the bank 504 is now selected as the
cold-start bank. Note that the functional roles of the banks
have just been reversed. That is, the bank 504 is the
cold-start bank and is write-protected. The bank 502 is now
the Alternate-Bank which can receive updates.

It is important to note that the cold-Start bank cannot
become corrupted either inadvertently or maliciously under
direct program control because the jumper 604 also acts to
write-protect the cold-start bank. Malicious corruption of the
firmware could be through a virus. Only the bank which is
not selected as the cold-start Source (i.e., the Alternate-Bank)
can be updated under direct program control. Thus, no
Software can alter the cold-start bank. To update the firm
ware contained in the cold-Start bank, one must update the
Alternate-Bank and then toggle the jumper 604. The integ
rity of the cold-Start path is always guaranteed. If the new
bank could not boot the system for whatever reason, then the
jumper 604 could be retoggled and the update procedure
reapplied; the old bank would still be intact because, if the
System could not boot, an update program could not have
been run.
Of course, it is not necessary to update the cold-Start bank.

Only a significant problem or Significant functional
improvement would require the cold-start bank to be
changed. However, history has shown that the ability to
update the ROM portion of the firmware would be very
desirable in certain instances. During normal System
operation, the cold-start bank would perform Some very
preliminary tests which will include the validity of the
Alternate-Bank. If the Alternate-Bank is valid, then the
cold-Start bank transferS control to the Alternate-Bank, thus
leaving the Alternate-Bank active and in control Of System
operation. Under certain conditions, it may be advantageous
to override any changeover from the cold-Start bank to the
Alternate-Bank. In this case an additional test, Such as
checking the “maintenance override' indicator, can be used.

15

25

35

40

45

50

55

60

65

16
This maintenance override is sometimes called “CE over
ride' or “Customer Engineer override.” When the mainte
nance override is active, the cold-Start bank would not
Switch to the Alternate-Bank even if the Alternate-Bank was
found to be valid. One of the uses of the CE override, which
exists on current Systems and is well known, is to allow a
technician Servicer of the computer System to bypass any
password checks which might inhibit the efficient repair of
the computer System.
The firmware subsystem 242 of the invention is also

valuable during the time period in which the computer
system is under development. With firmware in erasable
programmable read only memory (EPROM), each firmware
revision would need to be programmed or “burned' into the
EPROM. The procedure to burn an EPROM entails first
locating an EPROM of the correct type and then erasing it
through exposing it to ultraViolet light in a special erasing
device. The time to erase an EPROM may vary, but it can
take over ten minutes. Then, the erased EPROM must be
placed into another special device called an EPROM pro
grammer. The new firmware program code must then be
loaded into this EPROM programmer which is often a time
consuming operation. Then, the EPROM programmer must
be instructed to transfer or burn the loaded firmware code
into the EPROM device. This operation takes yet more
minutes to accomplish. Then, the EPROM device must be
removed from the EPROM programmer and inserted into
the system under test. To insert the new EPROM, the old
EPROM currently in the system must be removed. The
reinoval and insertion process of these devices. Sometimes
results in damaged hardware. It should be appreciated that
the firmware subsystem 242 of the present invention, in
which it normally takes no more than 15 Seconds to com
plete the reprogramming of the Alternate-Bank, can be
utilized in the System development environment, and is a
significant improvement over the old EPROM scenario.
While the present invention was described above, it will

be understood by those skilled in the art that various changes
in detail may be made without departing from the Spirit,
Scope, and teaching of the invention. For example, while the
preferred embodiment uses Intel processors and an IBM
PS/2 MICRO CHANNEL bus for illustrative purposes, this
invention can be implemented on other processors and/or
bus types. Likewise, those skilled in the art will recognize
that many elements of the invention can be implemented in
hardware or Software. Accordingly, the invention should be
limited only as Specified by the appended claims.
What is claimed is:
1. A method of utilizing firmware in a data processing

System, comprising the Steps of
a) providing first and Second non-volatile, alterable

memories, each of Said first and Second non-volatile,
alterable memories containing Said firmware;

b) designating one of Said first and Second non-volatile,
alterable memories as a cold-Start memory and the
other of Said first and Second non-volatile, alterable
memories as an alternate memory;

c) performing preliminary initialization of Said data pro
cessing System using Said firmware from Said cold Start
memory;

d) determining which of Said cold-start memory or said
alternate memory has a newer version of Said firmware,
and Selecting whichever of Said cold-Start memory or
Said alternate memory that has said newer version of
Said firmware as an active memory; and

e) continuing initialization of Said data processing System
using Said newer version of Said firmware from Said
active memory.

5,878.256
17

2. The method of claim 1, further comprising the Steps of:
a) after said data processing System is initialized, Select

ing Said alternate memory as active;
b) updating said firmware in Said alternate memory; and
c) repeating said steps of performing preliminary initial

ization of Said data processing System using Said firm
ware from Said cold-Start memory, determining which
of Said cold-Start memory or said alternate memory has
a newer version of Said firmware and Selecting which
ever of Said cold-Start memory or said alternate
memory having Said newer version of Said firmware as
an active memory and continuing initialization of Said
data processing System using Said firmware from Said
active memory.

3. The method of claim 2, further comprising the steps of:
a) determining if said firmware contained in Said alternate
memory is valid after Said firmware contained in Said
alternate memory is updated; and

b) if Said firmware in Said alternate memory is not valid,
then Selecting Said cold-Start memory as Said active
memory.

4. An apparatus for utilizing firmware in a data processing
System, comprising:

a) means for providing first and Second non-volatile,
alterable memories, each of Said first and Second non
Volatile, alterable memories containing Said firmware;

b) means for designating one of Said first and Second
non-volatile, alterable memories as a cold-start

15

25

18
memory and the other of Said first and Second
nonvolatile, alterable memories as an alternate
memory;

c) means for performing preliminary initialization of said
data processing System using Said firmware from Said
cold Start memory;

d) means for determining which of Said cold-start memory
or said alternate memory has a newer version of Said
firmware, and Selecting whichever of Said cold-start
memory or Said alternate memory that has said newer
Version of Said firmware as an active memory; and

e) means for continuing initialization of Said data pro
cessing System using Said newer version of Said firm
ware from Said active memory.

5. The apparatus of claim 4, further comprising:
a) means for Selecting said alternate memory as active

after Said data processing System is initialized;
b) means for updating Said firmware in Said alternate

memory.
6. The apparatus of claim 5, further comprising:
a) means for determining if Said firmware contained in

Said alternate memory is valid after said firmware
contained in Said alternate memory is updated; and

b) means for Selecting said cold-start memory as said
active memory if Said firmware in Said alternate
memory is not valid.

