
INSIDE THE IBM PCs

The ins and outs of the PS/2 machines '
video systems

PS/2 Video Prog ram m i ng

The IBM PS/2 series intro­
duces two · new video subsys­
tems, the multicolor graphics
array (MCGA) and v ideo
graphics array (VGA) . This
article is an overview of the
MCGA and the VGA from a
programmer's point of view.
If you are already familiar
with older video adapters ,
such as the CGA, EGA, or
Hercules cards, this article
will point out the similarities
and differences between the
PS/2 video subsystems and
previous IBM video adapters.
If you are new to video hard­
ware programming, you can
use the examples in this article
as a focus for further explora­
tion of the PS/2 hardware.

Unlike the IBM PC, XT,
and· AT, into which you must
install a separate card that
supports the necessary hard­
ware to drive a video display,
all the PS/2s are equipped
with a built-in video subsys­
tem on the motherboard. The
Model 3 0 comes with the
MCGA, while the Models 50,
60, and 80 use the VGA.

For compatibility (and, no
doubt, in hopes of selling lots
of hardware), IBM also offers
a VGA adapter that imple­
ments the VGA subsystem on
a card for the XT, AT, or PS/2 Model 30.

Monitors
The MCGA and VGA differ from previ­
ous IBM video adapters in that both re­
quire that you use an analog monitor in­
stead of a digital monitor. Adapters such
as the CGA and the EGA use digital
monitors in which the RGB color signals
generated by the adapter are digital sig­
nals (on or off) . This limits the number of
different colors that the subsystem can

lilustration: Kevin Short © 1987

Richard Wilton

display. For example, IBM's enhanced
color display, which is driven by six RGB
signals as generated by an EGA, can
display a total of 64 (26) different colors.

In contrast, the PS/2-compatible
monitors use RGB signals with voltage
levels that are continuously variable in­
stead of simply on or off. Because the dis­
played brightness of a color corresponds
to the voltage level of the color drive sig­
nals, an analog monitor can display a
much larger variety of colors.

directly.

I B M offers one mono­
chrome and two color moni­
tors for use with the MCGA
and the VGA. You can use a
monochrome or color monitor
with either video subsystem.
You can also use EGA-com­
patible monitors with analog
capability, such as the NEC
MultiSync and Sony Multi­
S c a n m o n i to r s , with the
MCGA and VGA.

Compatibility
Programs that run on the CGA
can run unchanged on the
MCGA, even if they bypass
the video BIOS and program
the hardware directly. Also,
because the PS/2 Model 30
has a PC-compatible bus, a
monochrome display adapter
or Hercules adapter can co­
exist with the MCGA in the
PS/2 Model 30.

The VGA is similar in its
programming interface to the
EGA . Its control ports and
buffer addressing are EGA­
compatible, so programs that
run on an EGA generally run
on a VGA as well. The VGA is
compatible enough with the
EGA at the hardware level that
the VGA can usually run ill­
behaved programs that access
the EGA control registers

From a programmer' s perspective,
there is not much resemblance between
the MCGA and the VGA. The 110 port
assignments in the MCGA and VGA dif­
fer significantly . So does the layout of

continued

Richard Wilton (6236 West Sixth St. , Los
Angeles, CA 90048) is author of The Pro­
grammer's Guide to PC and PS/2 Video
Systems; which is due out in November.

B Y T E 1987 Extra Edition • Inside the ffiM PCs 67

video RAM in the two subsystems. A
program that bypasses the video BIOS to
control the hardware directly will prob­
ably not run on both the MCGA and the
VGA unless it contains special code for
programming each subsystem indepen­
dently.

Documentation
The programming interface to PS/2 video
hardware is documented in the IBM tech­
nical reference manuals for the Models
30, 50, and 60 . The video BIOS is
covered by a separate set of IBM refer­
ence manuals, the Personal System/2 and
Personal Computer BIOS Interface Tech­
nical Reference. Obviously, this article
does not cover all the details of the video
hardware implementation. If you need to
understand the hardware or firmware in
detail, you should obtain the appropriate
IBM technical manuals.

The MCGA
The heart of the MCGA circuitry lies in
two proprietary gate arrays: the memory-

PS/2 VIDEO PROGRAMMING

controller gate array, which incorporates
the functions of a CRT controller, and the
video-formatter gate array, which con­
trols video mode selection and color-at­
tribute decoding.

You can program the memory control­
ler through a set of 8-bit registers (see
table 1) mapped to I/0 ports 3D4 and
3D5 hexadecimal. [Editor's note: For the
remainder of this article, addresses will
be in hexadecimal.] As on the CGA, you
access the registers by first writing the
register number to the port at 3D4, and
then writing or reading the specified reg­
ister at 3D5 . Unlike the CGA, however,
you can read and write all the memory­
controller registers. This is a handy fea­
ture if you are debugging programs, al­
though it's not a good idea to rely on it if
you are concerned about maintaining
CGA compatibility.

The first 16 memory-controller regis­
ters are analogs of the registers on the
Motorola 6845, the CRT controller chip
used in the CGA. This means that eGA­
compatible programs that access these

Table 1: MCGA memory-controller registers. Registers 0 through OF
hexadecimal are comparable to those in the CGA 's CRT controller.

Register
number

0
1
2
3
4
5
6
7
8
9
OA
08
oc
OD
OE
OF
1 0
1 1
1 2
1 3
1 4

Function

Horizontal total
Horizontal displayed
Start horizontal sync
Sync pulse width
Vertical total
Vertical total adjust
Vertical displayed
Start vertical sync
(Reserved)
Scan l ines per character
Cursor start
Cursor end
Start address high
Start address low
Cursor location high
Cursor location low
Mode control
Interrupt control
Character generator, sync polarity
Character-generator pointer
Character-generator count

Listing 1: Video mode selection using the video BIOS.

mov ah , O ; AH = INT 10h function #
mov al, VideoModeNumber ; AL= 11h (640x480 two-color)

12h (640x480 16-color)
13h (320x200 256-color)

int 10h ; Call video BIOS

68 Inside the ffiM PCs • B Y T E 1987 Extra Edition

registers directly can also run on the
MCGA. Because the default horizontal
and vertical CRT timing parameters used
on the MCGA differ from those used on

, the CGA, you might want to write-protect
the first seven registers so that eGA­
compatible programs that attempt to up­
date these registers do not inadvertently
disrupt crucial CRT timing signals . Bit 7
of the mode-control register (register
l Oh) is the write-protect bit for the timing
registers.

The remaining memory-controller
registers control video mode selection
and the alphanumeric character genera­
tor. These registers do not exist on the
CGA. They support functions that are
similar to what is available on the VGA:
additional graphics modes and RAM­
loadable alphanumeric character sets.

The video formatter supports three
CGA-compatible control registers. The
mode-control register (110 port 3D8)
controls v ideo mode selection . The
color-control register (port 3D9) con­
trols palette and graphics mode back­
ground-color selection. The status regis­
ter (port 3DA) is a read-only register
whose contents indicate the status of the
CRT's horizontal and vertical timing sig­
nals. All three of these registers are com­
patible with the analogous registers on
the CGA.

In addition to the six video modes sup­
ported by the CGA, the MCGA offers a
640 by 480 two-color graphics mode
(video BIOS mode l l H) and a 320 by 200
256-color graphics mode (BIOS mode
1 3H). You can set up both new modes, as
well as all the CGA-compatible modes
using INT lOh function 0 (see listing 1) .

New Features
Two features of the MCGA are of special
interest to programmers. One is that the
vertical resolution of both alphanumeric
and graphics modes is greater than on
previous IBM video adapters. The other
is that the MCGA can display up to 256
different colors at one time out of a possi­
ble 262 , 1 44 (256K) colors.

The vertical resolutions of the default
BIOS video modes are listed in table 2. In
alphanumeric modes, the vertical resolu­
tion is 400 scan lines-twice that of the
CGA and better than the EGA's 350-Iine
"enhanced" modes. Since the BIOS still
displays 25 rows of characters in alphanu­
meric modes, the vertical size of each
displayed character is 1 6 scan lines .
These higher-resolution characters are
sharp and easy to read.

When the MCGA emulates the COA
graphics modes (640 by 200 two-color
and 320 by 200 four-color), it doubles the
vertical size of pixels so that each is two
scan lines high. Thus, although the CGA-

compatible graphics modes use the same
resolution in terms of pixels, the dis­
played resolution is still 400 lines, so
these modes have a sharper appearance
on the MCGA than they do on a CGA.

Another feature of both the MCGA and
the VGA is expanded color display capa­
bility. This is provided by a digital-to-an­
alog converter (DAC) that generates the
analog RGB signals used to drive the
PS/2 monochrome and color monitors.
(The monochrome monitor responds
only to the green color signal; the color
monitors recognize all three.)

The video DAC uses a set of 256 eigh­
teen-bit internal registers, each of which
specifies an RGB combination. Each of
the three primary colors is allotted 6 bits
of each color register; the DAC converts
each 6-bit value to a corresponding ana­
log voltage level in the signals it outputs
to the monitor. Thus, the video DAC can
produce any of 64, color intensities for
each of the three primary colors in a color
register, thereby generating 256K (643)
color combinations. Since there are 256
video DAC color registers, the video sub­
system can display any 256 of the 256K
color. possibilities at one time.

Video BIOS
The video BIOS on the Model 30 pro­
vides the same set of functions as the
motherboard ROM BIOS on the PC . The
programming interface is the same: You
access all video BIOS functions through
interrupt l Oh and pass parameters to the
BIOS routines in the CPU's registers.

Also, several new INT 10h functions
are available in the Model 30, as well as
the other models in the PS/2 series (see
table 3). IBM has expanded the INT 10h
function lOh to provide access to the
video DAC color registers. Function 12h
has several new subfunctions that let you
vary the default actions of other BIOS
routines. For example, you can call INT

10h function 12h with the BL register set
to 3 1h to enable or disable default palette
loading when the video mode is changed.

INT 10h functions lAh and l Bh are
new to the PS/2 series. Your programs
can call these INT 10h functions to deter­
mine the state of the video subsystem. A
call to function lAh returns the video
subsystem's display combination code,
which indicates what type of monitor is in
use. Function lBh returns a table whose
contents describe the current state of the
video BIOS : the current video mode, ac­
tive video page, amount of video RAM
available, and so on. These functions are
useful in programs designed to run in
more than one video mode, as well as in
pop-up RAM-resident programs that
must determine the current video state to
produce appropriate video output.

PS/2 VIDEO PROGRAMMING

Alphanumeric-Mode Programming
Despite the MCGA's improved resolu­
tion, programming in alphanumeric
modes is virtually the same as on the
CGA. The important difference is that
the alphanumeric character generator on

the MCGA can display user-defined
characters. (The EGA, VGA, Hercules
Graphics Card Plus, and Hercules In­
Color Card also have this capability.)
The MCGA's alphanumeric character

Table 2: New BIOS video modes on the MCGA and VGA.

Mode
number

0

0

2

2

1 1 H
1 2H
1 3H

40 by 25 1 6-color alphanumeric
(320 by 400 resolution)
40 by 25 1 6-color alphanumeric
(360 by 400 resolution)
80 by 25 1 6-color alphanumeric
(640 by 400 resolution)
80 by 25 1 6-color alphanumeric
(720 by 400 resolution)
640 by 480 two-color graphics
640 by 480 1 6-color graphics
320 by 200 256-color graphics

MCGA

X

X

X

X

Table 3: New INT lOhfunctions on the MCGA and VGA.

Function 1 Oh: Color-palette interface
AL=3: Toggle alphanumeric intensity/blink state
AL= 7: Read individual palette register (VGA only)
AL=8: Read overscan (border color) register (VGA only)

VGA

X

X

X

X

X

AL=9: Read all palette registers and overscan register (VGA only)
AL= 1 Oh: Set individual video DAC color register
AL= 1 2h: Set block of video DAC color registers -
AL= 1 3h: Select video DAC color page (VGA only)
AL= 1 5h: Read individual video DAC color register
AL= 1 7h: Read block of video DAC color registers
AL= 1 Ah: Read video DAC color-page state (VGA only)
AL= 1 Bh: Perform gray-scale summing

Function 1 1 h: Character-generator interface
AL=4: Load 8 by 1 6 alphanumeric characters
AL= 14h: Set alphanumeric mode using 8 by 1 6 characters
AL=24h: Load 8 by 1 6 graphics characters

Function 1 2h: Alternate select
BL=30h: Select vertical resolution for alphanumeric modes (VGA only)
BL=31 h: Enable/disable default palette loading
BL=32h: Enable/disable video addressing
BL=33h: Enable/disable default gray-scale summing
BL=34h: Enable/disable alphanumeric cursor emulation (VGA only)
BL=35h: Display-switch interface

Function 1 Ah: Display combination code
AL=O: Read display combination code
AL= 1 : Write display combination code

Function 1 Bh: Functionality/state information

Function 1 Ch: Save/restore video state (VGA only)
AL=O: Return state buffer size
AL= 1 : Save video state
AL=2: Restore video state

continued

B Y T E 1 987 Extra Edition • Inside the ffiM PCs 69

PS/2 VIDEO PROGRAMMING

Listing 2: Establishing an 80 by 50 alphanumeric mode on the MCGA.

; load video BIOS 8x8 characters into alphanumeric character generator
mov ax, 1102h ; AH = INT lOh function number

mov bx, O
; AL = 8x8 character-set load
; BX = block to load

int lOh
mov ax, llOJh

; load 8x8 characters into RAM
; AH = INT lOh function number

mov bx, O
; AL = character-generator load
; BX = blocks to load

int lOh ; load 8x8 characters into

, ; character generator
; program CRT controller to display 8x8 characters

mov dx, JD4h ; DX = MCGA I/0 port address
mov ax,J09h ; AL = 9 (register number)

; AH = 3 (value for register)
out dx,ax ; update scan-lines register
mov al, OAh ; AL = OAh (register number)
ou1< dx, ax ; update cursor-start register
mov al, OBh ; AL = OBh (register number)
out dx, ax ; update cursor-end register

; update status variables in video BIOS data segment
mov ax, 40h
mov ds , ax ; DS -> video BIOS data segment
mov word ptr ds : [4Ch] , 80*50*2 ; update CRT_LEN
mov byte ptr ds : [84h] , 49 ; update ROWS

mov word ptr ds : [85h] , 8 ; update POINTS

AOOO:OOOO
0050
OOAO

9560
95 80

Memory Display

I
Figure 1: A video-buffer map in 640 by 480 two-color graphics mode.

AOOO:OOOO
0140
0280

F780
FSCO

Memory Display

...

...

_.,.

I
Figure 2: A video-buffer map in 320 by 200 256-color graphics mode.

70 Inside the ffiM PCs • B Y T E 1987 Extra Edition

line O
line 1
line 2 .

line 478
line 479

line D
line 1
line 2

line 1 98
line 1 99

generator can display characters from any
of four different 256-character tables de­
fined in video RAM.

To make the MCGA's character gener­
ator display one of these character sets,
you first load the bit patterns that define
the characters into video RAM. Then you
program the character generator to copy
the bit patterns from video RAM into one
of its two internal character-definition
tables. (These character-definition tables
are called font pages in the IBM technical
literature.)

It i s easy to use the MCGA's RAM­
loadable character sets on the MCGA to
display characters that are smaller than
the default 16-scan-line characters. In
listing 2, the program calls the video
BIOS to load the default graphics-mode
character definitions-in which charac­
ter& are only eight lines high-for use by
the alphanumeric character generator.
The code then reprograms the MCGA's
memory controller to display only eight
scan lines in each row of characters; the
result is 50 rows of 80 characters each.

Apart from supporting RAM-loadable
character sets , the MCGA replicates
almost all the CGA's capabilities . . How­
ever, the MCGA is not troubled by prob­
lems with display interference in alpha­
numeric modes. On the CGA, you must
carefully synchronize CPU accesses to
the video RAM with horizontal and verti­
cal retrace intervals in the display refresh
cycle. If you don't, you might see random
patterns of interference or snow on the
screen each time a program accesses the
video buffer. The hardware design of the
MCGA is such that this sort of display in­
terference does not occur.

Surprisingly, the MCGA cannot gen­
erate a colored border. In alphanumeric
modes on the CGA, you can display a
border in any of 16 colors selected by
programming the color-select register
(1/0 port 3D9). On the MCGA, you can
still program the color-select register, but
the MCGA does not display a border, re­
gardless of the value you store in the
register .

Graphics-Mode Programming
In CGA-compatible 640 by 200 two­
color and 320 by 200 four-color modes,
the MCGA emulates the CGA. The sys­
tem maps pixels with a two-way inter­
leave in the video buffer at B800:0000,
just as they are mapped on the CGA.
Video-buffer addressing is different,
however, in 640 by 480 two-color and
320 by 200 256-color modes.

The video-buffer map in both 640 by
480 two-color and 320 by 200 256-color
modes starts at AOOO:OOOO. Both modes
map pixels linearly in the buffer from left

continued

to right and from top to bottom on the
screen. In 640 by 480 two-color mode, a
bit represents one pixel, so there are eight
pixels to each byte in the video buffer and
80 bytes in the buffer per row of pixels on
the screen (see figure 1) .

I n 320 by 200 256-color mode, each
pixel value comprises 8 bits, so the video
buffer is mapped as 200 320-byte rows
(see figure 2) .

You can write routines that manipulate
pixels in these MCGA graphics modes by
modifying code that runs in CGA-com­
patible graphics modes. The routine in
listing 3 is an example of code that up-

PS/2 VIDEO PROGRAMMING

dates a single pixel in 320 by 200 256-
color mode. The program computes the
video-buffer address by multiplying the
number of pixels in each row by the pixel
y coordinate and then adding the pixel x
coordinate. Since each byte in the buffer
represents one pixel, updating a pixel
consists of a single machine instruction.

The MCGA's 640 by 480 two-color
graphics mode deserves attention be­
cause its horizontal resolution and verti­
cal resolution are the same in terms of the
number of pixels displayed per inch .
(Programmers sometimes describe this
circumstance by saying that the pixels are

Listing 3: Setting the value of a pixel in 320 by 200 256-color mode.

splJ PROC near
; call with: AX = y coordinate

BX = x coordinate
CL = pixel value

; compute address of pixel in video buffer
mov dx,J20
mul dx
add bx, ax ; BX = X + 320*Y
mov ax, OAOOOh
mov ds , ax ; DS : BX -> pixel in video buffer

; update the pixel value
mov [bx] , cl
ret

splJ ENDP

Listing 4: Updating a video DAC color register.

mov ah, lOh ;AH = INT lOh function #
mov bx, 7 ; BX = 7 (register #)
mov dh,RedValue ; DH, CH, CL = 6-bit RGB values
mov ch, GreenValue
mov cl ,BlueValue
int lOh ; Call video BIOS

"square . ") This means that when you
draw a figure in 640 by 480 graphics
mode, you do not need to scale the figure
to accommodate different horizontal and
vertical resolutions.

Video DAC Programming
Programming the MCGA's video DAC is
straightforward when you use the video
BIOS . In all modes except the 320 by 200
256-color graphics mode, you can use
only the first 16 video DAC registers.
The video BIOS loads these registers by
default with a set of 1 6 CGA-compatible
color values . You can, however, update
any of these color registers using any of
the 256K color combinations available.

For example, listing 4 shows how you
could change the color value in video
DAC register 7 . The color-register value
is actually 1 8 bits in size-red, green, and
blue components are each 6 bits . The
higher the value you specify for each
component, the higher the displayed in­
tensity of that color.

If a monochrome display is attached to
the MCGA, the video BIOS performs a
gray-scaling computation before it loads a
color value into the specified video DAC
color register. The video BIOS performs
gray-scaling by taking a weighted average
of the red, green, and blue values you
specify. (The formula used is 30 percent
red + 59 percent green + 1 1 percent
blue.) The result is a gray-scale value that
corresponds to the overall intensity of the
specified color combination.

The VGA
The VGA subsystem takes its name from
the video graphics array , a proprietary
VLSI gate-array circuit that incorporates
the functions of several EGA compo­
nents: the CRT controller, the sequencer,

continued

(to monitor)
Horizontal and vertical timing

Video RAM

Figure 3: The VGA subsystem. Components of the VGA chip are outlined in red.

72 Inside
.
the IBM PCs • B Y T E 1987 Extra Edition

Digital

RGB
Video
DAC

(to monitor)

Analog RGB

PS/2 VIDEO PROGRAMMING

Listing 5: Establishing an 80 by 50 alphanumeric mode on the VGA.

; establish 400-line resolution in alphanumeric mode
mov ax, 1202h ; AH = 12h (INT lOh function number)

; AL = 2 (select 400-line modes)
mov bl, JOh ; BL = alphanumeric scan-lines select
int lOh
mov ax, J ; call video BIOS to set mode
int lOh

; load video BIOS 8x8 characters into alphanumeric character generator
mov ax, 1112h ; AH = INT lOh function number

; AL = 8x8 character-set load
mov bl, O ; BL = block to load
int lOh ; load 8x8 characters into RAM

the graphics controller, and the attribute
controller (see figure 3).

You program each component of the
VGA as you would on the EGA. Each
contains a number of control registers
mapped to 8-bit ports . As with the
MCGA, you access each register by writ­
ing a register number to an 1/0 port and
then reading or writing the specified reg­
ister. The CRT controller has 25 registers
addressed at ports 3D4 and 3D5; the se­
quencer has 5 registers at ports 3C4 and
3C5 ; the graphics controller maps 9 reg­
isters to 3CE and 3CF; and the attribute
controller has 2 1 registers, including 1 6
palette registers, mapped to 3CO and 3 C 1 .

Almost all of the many VGA control
registers have the same function on the
EGA, so if you are familiar with the
EGA, you will be comfortable program­
ming the VGA as well. The function of
each of the registers is documented in
IBM's technical reference manual for the
PS/2 Models 50 and 60.

The VGA supports all the video modes
available on the EGA, as well as the 640

by 480 two-color and 320 by 200 256-
color graphics modes found on the
MCGA. One additional graphics mode is
unique to the VGA: a 640 by 480 16-color
graphics mode (BIOS mode 12H) that is
similar to the EGA-compatible 640 by
350 16-color mode, but with higher ver­
tical resolution.

As on the MCGA, the default alphanu­
meric modes on the VGA have 400-line
vertical resolution. Unlike the MCGA,
however, you can set up the VGA' s CRT
controller to display alphanumeric char­
acters with 200-line or 350-line resolu­
tion for compatibility with the CGA and
the EGA.

Video BIOS
As on the MCGA, the VGA video BIOS
provides support for all the CGA- and
EGA-compatible INT lOh functions. The
VGA BIOS also supports INT lOh func­
tions 1Ah and lBh, which return infor­
mation regarding the hardware config­
uration and video BIOS status as they do
on the MCGA.

The VGA video BIOS also provides a
v ideo-state save/restore capability
through INT lOh function 1 C h . This
function can save and restore all control
registers, video DAC registers, and
video-related information from the BIOS
data area in RAM , using a buffer pro­
vided at a user-specified address. The
ability to save the state of the VGA and
subsequently restore it lets a program
switch between video modes or program
the palette and video DAC registers freely
without losing the context of a previously
established video state.

Alphanumeric-Mode Programming
As on_ the MCGA, CGA-compatible al­
phanumeric-mode programming on the
VGA is straightforward. Again, the video
buffer is addressed starting at B800:0000
and mapped with alternating character
codes and attributes. Video-BIOS sup­
port for character 1/0 is the same as it is
on other IBM video subsystems.

As for the EGA and MCGA, you can
configure the VGA to display user-de­
fined alphanumeric character sets. You
can also program the VGA' s CRT con­
troller to display characters of different
vertical sizes, so that you can display
more than the default 25 rows of alphanu­
meric characters. Listing 5 is a simple ex­
ample of how you can call the video BIOS
to set up an 80 by 50 alphanumeric mode
using the 8 by 8 character definitions
found in the BIOS ROM.

Graphics-Mode Programming
If you can program the EGA and MCGA
in graphics modes, you can program the
VGA. Routines that read and write pixels

continued

••• Keeps you going full steam
ahead when other debuggers
let you down. With four
models to pick from, you'll
find a Periscope that has just
the power you need.

Periscope I includes a half-length board with
56K of write-protected RAM; break-out switch;
software and manual for S345.

. . . Start with the model that fits your current needs. If
you need more horsepower, upgrade for the difference in price plus S 10!
And don't worry about having a lot more to Jearn . . . Even when you
move to the most powerful model, Periscope Il l , an extra dozen com­
mands are all that's involved.

Periscope's software is solid, comprehensive, and flexible. It
helps you debug just about any kind of program you can write .
thoroughly and efficiently. Periscope's hardware adds the power to solve
rhe really tough debugging problems.

Periscope requires an IBM PC, XT, AT, or close compatible
(Periscope Ill requires hardware as well as software compatibility); DOS

2 . 0 or later; 64K available memory; one disk drive; an SO-column
monitor.

74 Inside the ffiM PCs • B Y T E 1987 Extra Edition

Periscope II includes break-out switch; software
and manual for S 175.

Periscope II-X includes software and manual
(no hardware) for S J45 .

Periscope I I I includes a full-length board with 64K of
write-protected RAM, hardware breakpoints and real-time trace buffer;
break-out switch; software and manual. Periscope Ill for machines run­
ning up to 8 MHz is S995; for machines running up to 10 MHz, SJ095.

Call Toll-Free for free information or to order your

800-722-7006
- Periscope today!

MAJOR CREDIT CARDS ACCEPTED.

The

PERISC()PE
14 BONNIE LANE

ATLANTA, GA 30328

404/256-3860

Company, Inc.

Circle 1 72 on Reader Service Card

Circle 45 on Reader Service Card .

OUR PLUG-IN CARDS
GIVE YOU PLUG-IN
CONTROL.
Your IBM PC/XT/AT or
compatible can control any
IEEE-488 instrument.

You can:
D Plug-in to BASIC, G,

FORTRAN, or Pascal.
D Use HP-IB plotters,

printers, and instruments.
D Spend less time prog
D Call (61 7) 273-1 81 8 and put us to the test.
Complete hardware and software solutions for just $395. ((l,l"! Capital Equipment Corp.

99 South Bedford Street
Burlington, MA. 01 803

MANZANA 3 . 5 " 3FIVE® SOFTWARE

76 Inside the ffiM PCs • B Y T E 1987 Extra Edition Circle 127 on Reader Service Card

PS/2 VIDEO PROGRAMMING

in CGA- and MCGA-compatible graph­
ics modes also run on the VGA in these
modes. In EGA-compatible graphics
modes (320 by 200 16-color, 640 by 200
16-color, and 640 by 350 16-color), the
same routines you use on an EGA should
also run on a VGA. The only video mode
unique to the VGA is 640 by 480 16-color
mode, but it is almost identical to the
EGA-compatible 640 by 350 16-color
mode.

In these EGA-compatible modes, the
video buffer is set up as a set of four par­
allel bit planes, each of which shares the
same range of addresses starting at
AOOO:OOOO. Data bytes are transferred to
and from the bit planes in parallel when­
ever the CPU executes a read or write
instruction.

This limited parallel processing is car­
ried out by the VGA's graphics control­
ler, which contains a set of four 8-bit in­
ternal registers or latches . Whenever the
CPU executes an instruction that per­
forms a read from an address in the video
buffer, the graphics controller copies the
contents of each of the parallel bit planes
at the specified address into the latches.
Thus, for example, when the CPU exe­
cutes a MOV reg, mem instruction, the
graphics controller copies 4 bytes of data
from the bit planes into the latches.

The converse process occurs when a
CPU executes a write instruction. In this
case, the graphics controller combines
the data byte written by the CPU with the
contents of each of the latches and writes
the result to the bit planes. Thus, the se­
quence of events in updating the video
buffer in graphics modes is to execute a
CPU read followed by a CPU write. This
can be a sequence of two MOV instruc­
tions, as well as a single CPU instruction,
such as MOVS.

Pixels are represented by the set of cor­
responding bits at the same address in
each of the bit planes. Since there are four
bit planes, a pixel can have any of 16 (24)
different values, and the number of dif­
ferent colors you can display at one time
is 16. You might think of the contents of
the graphics controller latches as eight
adjacent pixel values instead of 1 byte
from each of the four bit planes.

As on the EGA, the key to graphics­
mode programming on the VGA is to con­
trol the way the graphics controller ma­
nipulates the data bytes (pixel values) it
reads from and writes to the bit planes.
On the VGA, two graphics-controller
read modes and four write modes affect
what the graphics controller does during
CPU reads and writes.

Graphics-Controller Read Modes
The two graphics-controller read modes
are the same as those implemented on the

EGA. In read mode 0, the value of one in
the four latches is copied to the CPU each
time the latches are loaded by a CPU read
operation. In read mode 1 , the eight pixel
values in the latches are compared to a
reference value stored in the graphics
controller's color-compare register. The
graphics controller returns the result of
the eight comparisons in a single byte to
the CPU. Each bit of the byte contains a 1
bit where a latched pixel value matches
the reference value.

Read mode 0 is useful for transferring
data out of the bit planes into system
RAM because you can access the con­
tents of each bit plane separately . You can
use read mode I for graphics operations,
such as region fills, where you must scan
the video buffer for pixels that match a
predetermined value.

Graphics-Controller Write Modes
Each of the four graphics-controller write
modes is also designed to simplify cer­
tain kinds of programming tasks. Write
mode 0 is the one that the video BIOS
routines use most frequently. In write
mode 0, the graphics controller combines
the eight latched pixel values with either
the data byte written by the CPU or with a
pixel value stored in the graphics-control­
ler set/reset register. The graphics con­
troller can AND, OR, or XOR pixel values,
as well as replace them with CPU or set/
reset data. You control this activity pixel
by pixel by storing a bit mask in the
graphics controller's bit-mask register;
the bit mask indicates which of the eight
latched pixel values is updated and which
is left alone during the operation.

Consider what happens in listing 6,
which uses write mode 0 to update the
value of a pixel in 640 by 480 1 6-color
mode. First, the routine computes the ad­
dress of the pixel in the video buffer, as
well as a bit-mask value for the bit-mask
register. Then the graphics-controller
registers are set up for the operation;
write mode 0 is selected, the desired pixel
value is stored in the set/reset register,
the set/reset function is enabled for all
four bit planes, and the bit-mask value is
placed into the bit-mask register. Then
the OR instruction updates the bit planes.
Finally, the graphics-controller registers
are updated with values that correspond
to those used by default by the video
BIOS, so that subsequent video BIOS
routines run as expected.

Clearly, most of the work involves
configuring the graphics controller; only
one CPU instruction actually updates the
pixel. Note the sequence of events that
occurs during execution of the OR instruc­
tion: First, a CPU read occurs , so the
latches are loaded with the eight pixel
values at the specified address. Then, the

PS/2 VIDEO PROGRAMMING

CPU performs a logical OR of a register
with the value it read from the graphics
controller and performs a CPU write
with the result.

0 for updating the value of individual
pixels in the buffer.

The graphics controller ignores the
byte written by the CPU because it is con­
figured to use the pixel value in the set/re­
set register to update the latches. The bit­
mask-register value specifies which of
the eight latched pixel values is replaced
with the set/reset value as the latched data
is copied to the bit planes during the CPU
write operation.

In graphics-controller write mode 1 ,
the contents of the four latches are simply
copied to the bit planes. Thus, write
mode 1 is useful in filling the video
buffer with a solid color or a pixel pat­
tern.

The VGA also supports a graphics­
controller write mode 3 . It is similar to
write mode 0, except that its bit-mask
value is derived by combining the data
byte written by the CPU with the value in
the bit-mask register using an AND opera­
tion. This lets you change the bit-mask
pattern without programming the bit­
mask register . However , because the
EGA does not support write mode 3, you
must avoid using it if you are designing a
program to run on the EGA as well as the
VGA.

Video DAC Programming

In write mode 2, the pixels in the latch­
es are updated with the pixel value speci­
fied in the CPU data byte instead of in the
set/reset register. Consequently, you can
use write mode 2 as easily as write mode

Using the video DAC is somewhat more
complicated on the VGA than on the
MCGA because the VGA's attribute con­
troller plays a role in accessing the video
DAC . The VGA does not restrict you to
using only the first 1 6 video DAC color

Listing 6: Setting the value of a pixel in 640 by 480 16-color mode.

sp12 PROC near ; call with : AX = y coordinate
BX = x coordinate
CL = pixel value

; compute the pixel address in the video buffer
push ex ; push pixel value

cx,bx mov
and
mov
shr
mov
mul

cl ,7
ch, lOOOOOOOb
ch, cl ; CH = b it mask for pixel
dx, 80
dx ; AX = Y*80

mov cl ,J
shr bx, cl ; BX = X/8
add bx, ax ; BX = Y*80 + X/8

mov ax, OAOOOh
mov ds, ax ; DS : BX -> pixel in video buffer

; set up the graphics controller
mov dx, JCEh
mov ax, 0005
out dx, ax
pop
mov

ax
ah, al

mov al, O

; set up write mode 0
; pop pixel value

out dx, ax ; set up set/reset register
mov ax, OFOlh
out dx, ax ; set up enable set/reset register
mov ah, ch
mov al, 8
out dx, ax ; set up b it-mask register

; update the pixel
or [bx] , al ; update latches during CPU read

; update b it planes during CPU write
; restore default graphics-controller register values

mov ax, OOOO
out dx, ax ; default setjreset value
mov ax, OOOl
out dx, ax ; default enable set/reset value
mov ax, OFF08h
out dx, ax ; default b it-mask value
ret

sp12 ENDP

continued

B Y T E 1987 Extra Edition • Inside the ffiM PCs 77

PS/2 VIDEO PROGRAMMING

registers in alphanumeric modes and 16-
color graphics modes. You can program
the attribute controller to address the 256
v ideo DAC registers in 1 6 register
blocks.

On the VGA, each 4-bit attribute value

(in alphanumeric modes) or 4-bit pixel
value (in graphics modes) is processed by
the attribute controller, which uses the
value to select one of its 16 palette regis­
ters (see figure 4). Each of the palette
registers contains a 6-bit value that com-

Attribute controller
color-select

register

2 bits

Attribute
controller Video

6 bits 8 bits DAC
4-bit pallette Analog

attribute registers RGB
signals

Figure 4: VGA color control.

Listing 7: Using a block of video DAC color registers.

Buffer db 3*64 dup (?) ; buffer for color-register values

; copy first 64 video DAe color registers to second 64 registers

mov ax, 1017h ; AH = 10h (video-BIOS function number)
; AL = 17h (read block of color registers)

mov bx, O ; BX = first register
mov cx, 64 ; ex = number of registers to read
mov dx, seg Buffer
mov es ,dx
mov dx, offset Buffer ; ES : DX -> buffer
int 10h ; read registers into buffer
mov ax, 1012h ; AH = 10h

; AL = 12h (set block of color registers)
mov bx, 64 ; BX = first register to set
mov cx, 64 ; ex = number of registers to set
mov dx, seg Buffer
mov es ,dx
mov dx,offset Buffer ; ES :DX -> buffer
int 10h ; set registers

; perform gray-scale summing
mov ax, 101Bh ; AH = 10h

mov
mov
int

bx, 64
cx, 64
lOh

; AL = lBh (perform gray-scale summing)
; BX = first register to sum
; ex = number of registers

; use the gray-scale values
mov ax, 1013h ; AH = 10h

; AL = 13h (select video DAe color page)
mov bx, 101h ; BL = 1 (select specified color page)

; BH = 1 (color-page specifier)
int 10h

; use the default color values again
mov ax, 1013h
mov bx, OOlh
int 10h

; BH = 0 (color-page specifier)

78 Inside the IDM PCs • B Y T E 1987 Extra Edition

(to monitor)

hines with the value in the attribute con­
troller's color-select register to form an
8-bit value; this 8-bit value is passed to
the video DAC.

The video DAC in turn uses the 8-bit
value to select one of its 256 color regis­
ters, each of which contains an 1 8-bit
RGB specification. In this way, a 4-bit at­
tribute decodes into the set of three ana­
log RGB values output by the video sub­
system to the monitor.

Both the values in the palette registers
and the value in the color-select register
determine which video DAC color regis­
ters are referenced to generate color
output.

By default, the video BIOS maintains
EGA compatibility by initializing the at­
tribute-controller palette registers with
the same 6-bit values as on the EGA, as
well as the first 64 video DAC registers
with RGB values that produce the same
64 colors available on the EGA.

You could use the three remaining 64-
register blocks of video DAC color regis­
ters by programming the attribute-con­
troller color-select register. Video BIOS
INT 10h function l Oh supports this. (In
IBM 's technical documentation, blocks
of video DAC color registers are referred
to as color pages.)

In listing 7, I used the video BIOS to
copy the contents of the first 64 video
DAC registers into the second block of 64

registers. Then I called the BIOS gray­
scaling function to replac.e the second
block of color-register values with their
gray-scale equivalents. At this point, I
could call INT 10h function 1 Oh again to
select either the default color values in the
first 64 color registers or the gray-scaled
values in the second 64 color registers.

I Could Go On . . .
Although there are many more PS/2
video programming techniques than I can
cover in the space of this article, it is easy
to draw one conclusion from this brief
overview: The MCGA and the VGA fall
squarely into the mainstream of IBM
video subsystems. Apart from its ability
to display more colors and somewhat im­
proved resolution, the MCGA strongly
resembles the CGA in its capabilities and
in the way you program it. Similarly, the
VGA offers nearly complete compatibil­
ity with the EGA.

The VGA represents an incremental
improvement over the EGA in terms of
versatility, but it does not introduce any
significant improvements in speed or res­
olution when you compare it with the
EGA or with "enhanced" EGA clones.
Nevertheless, it seems that many second­
source vendors of video adapters for PCs
and ATs regard the VGA as a new de facto
hardware standard. •

	2012_08_21_16_59_46
	2012_08_21_16_59_47
	2012_08_21_16_59_48
	2012_08_21_16_59_49
	2012_08_21_16_59_52
	2012_08_21_16_59_55
	2012_08_21_16_59_58
	2012_08_21_16_59_59
	2012_08_21_17_00_00

